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A P P L I E D  S C I E N C E S  A N D  E N G I N E E R I N G

Why soft contacts are stickier when breaking than 
when making them
Antoine Sanner1,2,3*, Nityanshu Kumar4,5, Ali Dhinojwala4, Tevis D. B. Jacobs6, Lars Pastewka1,2*

Soft solids are sticky. They attract each other and spontaneously form a large area of contact. Their force of attraction 
is higher when separating than when forming contact, a phenomenon known as adhesion hysteresis. The common 
explanation for this hysteresis is viscoelastic energy dissipation or contact aging. Here, we use experiments and 
simulations to show that it emerges even for perfectly elastic solids. Pinning by surface roughness triggers the 
stick-slip motion of the contact line, dissipating energy. We derive a simple and general parameter-free equation 
that quantitatively describes contact formation in the presence of roughness. Our results highlight the crucial role 
of surface roughness and present a fundamental shift in our understanding of soft adhesion.

INTRODUCTION
Insects, pick-and-place manufacturing, engineered adhesives, 

and soft robots use soft materials to stick to surfaces even in the 
presence of roughness. These materials stick to each other because 
of attractive van der Waals or capillary interactions at small scales 
(1). The strength of these interactions is commonly described by the 
intrinsic work of adhesion wint, the energy that is gained by these 
interactions per surface area of intimate contact. This work of adhe-
sion is most typically measured from the pull-off force Fpulloff = 
−3πwintR/2 of a soft spherical probe (see Fig.  1A) with radius R 
which makes a circular contact with radius a (see Fig. 1B) (2). For 
hard solids, the measured apparent work of adhesion is smaller than 
the intrinsic value wint because roughness limits the area of intimate 
contact to the highest protrusions (3, 4). In contrast, soft solids are 
sticky because they can deform to come into contact with a large 
portion of the rough topography. The overall strength of the adhe-
sive joint is then determined by the balance of the energy gained by 
making contact and the elastic energy spent in conforming to the 
surface. Following Persson and Tosatti (5), energy conservation im-
plies that surface roughness reduces the apparent work of ad-
hesion to

where eel is the elastic energy per unit contact area required to conform 
to the roughness (Fig. 1C). As shown in Fig. 1D, experiments typi-
cally follow different paths during approach and retraction, leading 
to different apparent values for work of adhesion for making and 
breaking contact, wappr and wretr. This adhesion hysteresis (6, 7) contra-
dicts Persson and Tosatti’s balance of energy, which gives the same 
value wPT for approach and retraction. The common explanation for 
this hysteresis is either contact aging or viscoelasticity (1, 8).

In this article, we show that adhesion hysteresis emerges even for 
perfectly elastic contacts and in the absence of contact aging and 
viscoelasticity because of surface roughness. We present a crack 

perturbation model (9–11) and experimental observations that reveal 
discrete jumps of the contact perimeter. These stick-slip instabilities 
are triggered by local differences in fracture energy between roughness 
peaks and valleys. Pinning of the contact perimeter (12–14) retards 
both its advancement when coming into contact and its retraction 
when pulling away. Our model quantitatively reproduces the hysteresis 
observed in experiments and allows us to derive analytical predictions 
for its magnitude, accounting for realistic rough geometries across 
orders of magnitude in length scale (15, 16). For soft spherical probes, 
we can describe the circular contact perimeter as a crack. The crack 
front is in equilibrium when Griffith’s criterion is fulfilled (17): The 
energy per unit area required locally for opening the crack, the fracture 
energy wloc, is equal to the energy released from the elastic deforma-
tion, GδA = wlocδA, where δA is the contact area swept out by the 
moving crack front. A more common way of writing this equation is

where both the elastic energy release rate G and the fracture energy 
wloc should be interpreted as forces per unit crack length. Johnson, 
Kendall, and Roberts (JKR) (2) derived the expression for the energy 
release rate G for a smooth spherical indenter, G = GJKR(b, a). 
Equation 2 then allows the evaluation of not just the pull-off force, 
but of all functional dependencies between rigid-body displacement 
b, contact radius a, and normal force F during contact.

For smooth spheres, the fracture energy is the intrinsic work of 
adhesion, wloc = wint, which for chemically homogeneous contacts 
does not vary with position. We will show below that surface rough-
ness can be transformed into a field wloc(x, y), which describes the 
fluctuation of the effective fracture energy in the equivalent smooth 
contact. Since the process of opening and closing adhesive contacts 
is locally reversible, the fracture energy wloc can be interpreted as an 
effective local work of adhesion. Equation 2 must then hold indepen-
dently for each point on the contact perimeter. We start our analysis 
by assuming that wloc(x, y) varies with position and by showing that 
this is sufficient to yield a hysteresis in the adhesive contact cycle.

RESULTS
Axisymmetric chemical heterogeneity
We first demonstrate the physical origin of the adhesion hysteresis 
using a simplified surface that has concentric rings of high and low 
adhesion energy, similar to the models by Guduru (18), Kesari and 
Lew (19, 20), and Popov (21). Rather than being random, wloc(a) 

wPT = wint − eel (1)

G = wloc (2)
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varies in concentric rings of wavelength d as a function of distance a 
from the apex of the contacting sphere (Fig. 2A). Figure 2B shows 
wloc(a) alongside GJKR(b, a) for a fixed displacement b. Because of 
the spatial variations of wloc, there are multiple solutions to Eq. 2 
indicated by the labels A and B. Moving into contact from the solution 
denoted by A leads to an instability where the solution A disappears, at 
which the contact radius jumps to the next ring of wloc(a). This samples 
the lower values of wloc shown by the green line in Fig. 2B. Conversely, 
moving out of contact progresses along a different path that samples 
the higher values of wloc(a), shown by the red line. The combination 
of fluctuations in wloc and the elastic restoring force GJKR acts like a 
ratchet resisting the growing and shrinking of the contact area and 
leads to a stick-slip motion of the contact line. The line is pinned by 
the first strong-enough obstacle it encounters, so that it is pinned at 
a low contact radius when the contact area grows and at a high radius 
when it shrinks.

In the limit of roughness with a small wavelength, d → 0, GJKR 
does not decrease substantially before the contact line arrests at the 
next peak (see Fig. 2C). In this limit, the contact line samples the 
minimum values wappr of wloc during approach and the maximum 
values wretr during retraction. The functional relationship between 
b, a, and F then becomes identical to the JKR solution for smooth 
bodies (see equations S4 to S7), but with an apparent work of adhesion 
that is decreased during approach (wappr) and increased during retrac-
tion (wretr; see Fig. 2D). In this limit, the hysteresis wretr − wappr 
becomes equal to the peak-to-peak amplitude of wloc(a) (19).

Random chemical heterogeneity
The next step in complexity is moving from a simplified axisymmetric 
surface to a surface with random variation of the fracture energy 
wloc(x, y), where the contact line is no longer perfectly circular (see 

Fig. 3A). The energy release rate G at a given point now depends on 
the whole shape of the contact a(s), where s is the length of the cor-
responding path along the contact circle. On the basis of the crack 
perturbation theory by Gao and Rice (9, 10, 22), we recently derived 
the approximate expression (9, 11)

for the energy-release rate. Equation 3 has a simple interpretation: 
The adhesive contact line, a(s), behaves like an elastic line. The frac-
tional Laplacian (−Δs)1/2 of the contact shape a(s) (see also equa-
tion S35) yields a nonzero restoring force when the contact perimeter is 
no longer circular. This fractional Laplacian can be interpreted as a 
generalized curvature, and the prefactor c as the bending stiffness of 
the line. In the limit of a stiff line, c → ∞, the contact remains circular 
while in the opposite limit, c → 0, each point s along the contact 
perimeter can move independently because the restoring force 
disappears.

Section  S1D derives Eq.  3 and shows that near equilibrium, 
where G(s) = wint, the bending stiffness c of the elastic contact line is 
equal to wint. Note that counterintuitively, the bending stiffness does 
not depend on the elastic modulus of the bulk but only on the intrinsic 
work of adhesion. Equations 2 and 3 describe the perimeter of the 
contact as an elastic line pinned by the random field wloc(x, y) and 
thereby establish an analogy between adhesion and other depinning 
phenomena (12–14, 23).

The numerical solution of Eqs. 2 and 3 (see section S2) on a random 
field wloc(x, y) with a lateral correlation of length d yields force-area 
curves similar to those of our axisymmetric model (Fig. 3, B and C). 
The key difference is that the contact line now advances and recedes 
in jumps (Fig. 3A) that are localized over a characteristic length ℓ, 
the Larkin length (12–14, 23, 24). Between these jumps, the contact 
line is pinned. At the same rigid-body penetration, pinning occurs 
at lower contact radii during approach than during retraction, leading 
to a hysteresis in apparent adhesion described by two JKR curves with 
constant apparent work of adhesion wappr and wretr (Fig. 3C), similar 
to the curves obtained from our one-dimensional (1D) axisymmetric 
model (Fig. 2D).

Our numerical data in fig. S5 show that the magnitude of hysteresis, 
wretr − wappr ∝ w2

rms , where w2
rms

= ⟨(wloc−⟨wloc⟩)2⟩ , is the variance 
of the random field wloc. To understand this expression, we first discuss 
the virtual limit c → 0 where the line is floppy and deviations from 
circularity are not penalized. Floppy lines (c < wrms) can freely distort 
and meander along valleys during approach (green line in Fig. 3D) 
and peaks during retraction (purple line). Because of this biased 
sampling of the work of adhesion along the line, the contact radius 
is larger during retraction than during approach. In this individual-
pinning limit (14, 25, 26), each angle θ along the contact perimeter 
independently yields our 1D model and we obtain wretr − wappr ∝ 
wrms. In the opposite limit, c → ∞, the line is stiff and the contact 
remains circular (dashed line), randomly sampling as many regions 
of low and high adhesion. The fluctuations average out along the 
perimeter so that there is no hysteresis, wretr − wappr = 0. The contact 
radius is then obtained from the JKR expression evaluated for the 
spatially averaged work of adhesion, 〈wloc〉.

Our simulations (and experiments as shown below) are in an inter-
mediate regime characterized by local jumps over length ℓ or N = ℓ/d 
pinning sites. The line is effectively rigid over the Larkin length ℓ 

G(s) = GJKR[a(s)] + c(−Δs)
1∕2

a(s) (3)
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Fig. 1. Phenomenology of adhesive contact. (A) Many contacts can be described 
as spheres making contact with a flat surface. For soft materials, microscopic 
interactions are strong enough that the solids deform substantially near the con-
tact edge. The darker gray region illustrates the contact during approach and the 
lighter gray region the contact at the same rigid-body penetration during retraction, 
indicating a hysteresis between approach and retraction. (B) The contact forms a 
circle for contacting spheres, and its radius a can be measured from in situ optical 
images of the contact area. (C) Most natural and technical surfaces are rough so 
the solid needs to elastically deform to come into conforming contact. (D) The 
contact radius is larger and the normal force is more adhesive (negative) during 
retraction than during approach, as is also shown schematically in (A). The pull-
off force is the most negative force on these curves.
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and hence samples a coarse-grained work-of-adhesion field w(ℓ) with 
w

( �)
rms = wrms∕

√
N  because the fluctuations average out stochastically 

over the rigid sections. From the line elasticity, Eq. 3 and section S1D, 
we obtain that an excursion of the contact line by distance δa over 
this length leads to a restoring force δG ∝ cδa/ℓ, which must balance 
w

( �)
rms

 . We note that δa ≈ d, which is the distance to the closest local 

stable configuration (12, 13). The equilibrium condition δG = w
( �)
rms

 
then yields

where we used ℓ = Nd. This means that the magnitude of the hysteresis 
must scale as

N ∝ (c∕wrms)
2

(4)
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Fig. 2. Simplified axisymmetric contact demonstrating the physical origin of the adhesion hysteresis. The indenter is a perfect sphere with axisymmetric heteroge-
neity in local adhesion wloc(a). (A) Cross section of the contact at rigid-body penetration b = 0 (top) and top view of the axisymmetric work-of-adhesion heterogeneity 
wloc(a) (bottom). The blue color indicates regions of high adhesion. (B) Elastic energy release rates in an approach-retraction cycle for a sinusoidal work of adhesion wloc(a) 
with wavelength d = 0.36 (gray line). The black line shows the elastic energy release rate GJKR(b, a) as a function of contact radius for fixed rigid-body penetration b = 0. 
Fluctuations of wloc(a) lead to several metastable states A and B at fixed b. Arrows indicate elastic instabilities where the contact radius jumps between metastable states. 
(C) Energy release rates in an approach-retraction cycle for a work-of-adhesion heterogeneity with smaller wavelength d = 0.05. For short wavelengths, the works of adhesion 
sampled during approach (light green curve) and retraction (light red curve) stay close to the constant values wappr and wretr. (D) The contact radius and the normal force 
during an approach-retraction cycle for wavelength d = 0.36 (darker colors) and d = 0.05 (lighter colors). The dashed lines are the prediction by the JKR theory using wretr 
and wappr for the work of adhesion. The solid black line corresponds to increasing energy release rates at fixed rigid-body penetration b = 0. Energy release rates are displayed in 
units of the average work of adhesion and lengths and forces have been nondimensionalized following the conventions of (47, 48) as described in the Supplementary Materials.
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Fig. 3. Simulation of crack-front pinning by two-dimensional random heterogeneity. (A) Evolution of the contact line during retraction in a crack-front simulation on 
a two-dimensional random work-of-adhesion field. Each colored patch corresponds to an elastic instability during which the perimeter jumps between two pinned con-
figurations (dark lines), and the color scale represents the energy dissipated during each instability. The Larkin length ℓ corresponds to the smallest extent of these jumps 
along the perimeter and increases for weaker heterogeneity or for a stiffer line. (B) Contact radius as a function of the normal force in the simulation shown at the top of 
(A). The elastic instabilities lead to sudden jumps in the contact area and in the normal force. The solid black line corresponds to increasing energy release rates at fixed 
rigid-body penetration b = 0 and points A and B show that the contact radius is higher during retraction than during approach. The red arrows show the jump-in and 
jump-out-of-contact instabilities. (C) Contact radius as a function of the normal force in a simulation on a random chemical heterogeneity with a smaller feature size and 
wrms/c ≈ 0.45. The dashed lines are JKR curves with work of adhesion wappr and wretr predicted by our theory Eq. 6. (D) Contact lines at rigid-body penetration b = 0 on the 
random work-of-adhesion heterogeneity shown by the blue color map. Floppy lines are pinned at higher contact radii during retraction (purple line) than during retrac-
tion (green line) because they meander predominantly between regions of low adhesion (white patches) during approach and between regions of high adhesion (dark 
blue patches) during retraction. In the limit of a rigid line, the perimeter is perfectly circular (dashed line), randomly sampling as many regions of low and high adhesion.
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exactly as observed in our simulations. Identical results were ob-
tained previously for cracks in heterogeneous media (14, 27).

Topographic roughness
The final step in describing the adhesion hysteresis on real surfaces 
is to relate the random height variations h(x, y), which describe the 
rough topography, to spatial variations in the fracture energy wloc(x, y). 
For this, we need to consider excursions of the contact line normal 
to the surface in addition to the lateral excursions that are described 
by the contact radius a(θ) (see Fig. 4). First, note that the solid is 
always dilated near the crack tip. To conform to a valley, the elastic 
solid needs to stretch even more, requiring elastic energy. Using the 
same arguments that lead to Eq.  1, this additional elastic energy 
manifests as an effectively decreased local work of adhesion wloc. 
Conversely, conforming to a peak decreases the overall strain near 
the crack tip and releases elastic energy, leading to an increased 
equivalent work of adhesion. While this intuitive picture approximately 
describes the relationship between heights and local adhesion, the 
quantitative value of the local adhesion wloc depends nonlocally on 
the topographic field h(x, y) via an integral transformation derived 
in section  S1 (B and C). Section  S3 also shows that a crack-front 
simulation that uses wloc(x, y) yields results virtually indistinguishable 
from an exact boundary-element calculation on the rough topog-
raphy h(x, y).

Comparison to experiments
We contacted a rough nanodiamond film with a polydimethylsiloxane 
(PDMS) hemispherical lens while optically tracing the contact pe-
rimeter (see Materials and Methods). The nanodiamond film was 
characterized from atomic to macroscopic length scales using a 
variety of techniques, as described in (15, 16). The resulting power 
spectral density (PSD) (28) comprehensively describes the topography 
of the film and is shown in Fig. 5A. This experiment is compared to 
a simulation carried out on a roughness field with an identical PSD, 
leaving wint as the only free parameter. We determine wint by fitting 

the approach curves of the simulation and of the experiment. This 
yields wint = 63 mJ m−2, within the range expected for van der Waals 
interaction.

Our experiments show the same instabilities as the simulations. 
The trace of the contact line in Fig. 5B shows the jerky motion of the 
line for both, with comparable amplitudes of deviations from the 
ideal contact circle. Videos of the contact area in the indentation 
experiment (movie S1) show the stick-slip motion of the contact 
line, similar to our simulations and to observations by Lyashenko 
and Pohrt (29) on contact with rubber membranes. The fundamental 
hysteresis mechanism in our model, elastic instabilities, and stick-
slip motion of the contact line are clearly present in the experiment.

Measurements of the mean contact radius as a function of normal 
force also agree with our simulation results (Fig.  5C). While the 
simulation was adjusted to follow the experimental data during the 
approach, the match is almost perfect by adjusting only a single pa-
rameter, wint. The functional form of the experiment during approach 
is hence JKR-like with an apparent wappr ≃ 29 mJ/m2. During retraction, 
we observe the same phenomenology: From the point of largest normal 
force, the sphere retracts first at a constant contact radius before 
starting to follow a JKR-like curve with an increased work of adhesion 
wretr ≃ 106 mJ/m2. While the simulation retracts at slightly different 
forces, corresponding to ≃71 mJ/m2, the order of magnitude of the 
hysteresis is correctly predicted from our simple elastic model.

DISCUSSION
The matching order of magnitude between our model and the experi-
ment shows that elastic instabilities are an important contribution to 
the adhesion hysteresis of the real contact. The larger hysteresis in 
the experiment may originate from other dissipation mechanisms. 
When repeating the experiment in the absence of surface roughness 
on hydrophobically functionalized surfaces (see Materials and Methods 
and fig. S7), a hysteresis of wappr − wretr ≈ 21 mJ/m2 remains. This 
value corresponds to half of the difference between the measured and 
the predicted hysteresis. Because these experiments are carried out 
on smooth contacts, this remaining hysteresis must come from 
material-specific dissipation processes, most likely viscoelasticity.

We expect the viscoelastic contribution to the hysteresis in the 
rough contact to be at most as large as on the smooth surface. Visco-
elastic energy dissipation increases the apparent work of adhesion at 
high crack speeds (30, 31). While the average crack velocities are 
similar in both experiments, in the rough contact, the local velocity 
deviates substantially from the average. It either vanishes when the 
crack front is pinned or is orders of magnitude higher than the average 
during an instability. When it is pinned, the crack front is immobile 
and the viscoelastic effects are lower than in the smooth reference 
experiment. During an instability, the crack accelerates, until dissi-
pation mechanisms such as viscoelasticity become active. However, 
the total energy dissipated during the instability is predetermined by 
the energy difference between the quasi-static pinned configurations 
just before and just after the instability; see Fig. 3A. Any viscoelastic 
contribution to the adhesive force is determined by the pinned con-
figurations of the crack, where viscoelastic effects are at most as 
large as in the smooth contact.

Besides material-specific dissipation, quantitative differences could 
come from approximations or intrinsic assumptions of our model, 
such as the assumption of fully conforming contact. Contacts con-
form if the energy needed to fully conform to the surface roughness 

wretr − wappr ∝ w
( �)
rms

∝ w
2
rms

∕c (5)

B

A

Fig. 4. Mapping topographic roughness to equivalent chemical heterogeneity. 
The contact of a rough sphere (A) is equivalent to the contact of a sphere with a 
work-of-adhesion heterogeneity wloc (B). The solid is stretched at the crack tip and 
surface roughness perturbs this elastic deformation. The associated perturbation of 
the elastic energy can equivalently be described by fluctuations of the work of 
adhesion.

D
ow

nloaded from
 https://w

w
w

.science.org on M
arch 07, 2024



Sanner et al., Sci. Adv. 10, eadl1277 (2024)     6 March 2024

S c i e n c e  A d v a n c e s  |  R e s e ar  c h  A r t i c l e

5 of 7

is much lower than the gain in surface energy, eel ≪ wint (3, 32). For 
eel ≲ wint such as in our experiments, deep valleys may not enter into 
contact and leave penny-shaped microcracks within the perimeter 
of the contact. These microcracks likely increase the adhesion hysteresis 
and the pull-off force because the movement of the additional contact 
lines in the interior of these microcracks will also be subject to pinning 
by the topographic roughness. However, many experiments report a 
decrease of pull-off force with increasing roughness as, for example, 
reported in the classic adhesion experiment by Fuller and Tabor 
(33). These experiments may be within this limit eel > wint, where 
only partial contact is established within the contact circle (4, 32, 
34–36). Unlike the theory presented here for conforming contacts 
and our understanding of nonadhesive contact (3), there is presently 
no unifying theory that quantitatively describes adhesion in partial 
contact. Large-scale simulations with boundary-element methods 
are needed to better understand this intermediate regime (4, 35–39).

We now show that simple analytic estimates can be obtained from 
our crack-front model. The equivalent work-of-adhesion field has the 
property that its mean corresponds to the Persson-Tosatti expres-
sion (Eq. 1). Furthermore, it has local fluctuations with amplitude 
wrms =

√
2winteel which determine the adhesion hysteresis; see Eq. 5. 

This equation means that the main parameter determining the hyster-
esis is eel. We carried out crack-front simulations on self-affine ran-
domly rough topographies (Fig. 3C and section S4) to confirm that the 
apparent work of adhesion during approach and retraction is given by

and to determine the numerical constant k ≃ 3. We parametrically 
varied the roughness to confirm that the main parameter determining 
adhesion hysteresis is eel.

This expression allows us to connect the adhesion hysteresis to 
the statistical parameters of the rough topography. The elastic energy 
for fully conformal contact can be written as

where E′ is the elastic contact modulus (40) and h(1∕2)rms  is a geometric 
descriptor of the rough topography. In terms of the 2D PSD (28) 
Ciso, we define

where �⃗q is the wave vector. This expression contains the root mean 
square (rms) amplitude of the topography, h(0)

rms
 , the rms gradient of 

the topography, h(1)
rms

 , as well as arbitrary derivatives of order α. The 
elastic energy is given by the roughness parameter h(1∕2)rms  , which is 
intermediate between rms heights and rms gradients.

For most natural and engineered surfaces, h(1∕2)rms  depends on the 
large scales, like the rms height, because of their Hurst exponent 
H > 0.5 (5, 41–43). Our model is then consistent with the increase 
in pull-off force with hrms reported in (19, 44). We note that most 
measurements report insufficient details on surface roughness to al-
low definite conclusions on the applicability of a certain contact 
model. The range of length scales that dominate h(1∕2)rms  in our own ex-
periments is at the transition between power-law scaling and the flat 
roll-off at 2 μm, a length scale that is accessible with an atomic-force 
microscope. We illustrate the respective scales that contribute to h(α)rms 
in Fig. 5A.

The work performed on a soft indenter during the approach-
retraction cycle is dissipated in elastic instabilities triggered by 
surface roughness. The dissipated energy is the difference in en-
ergy between the pinned configurations just before and just after 
the instability. This pinning of the contact line explains why adhesion 
is always stronger when breaking a soft contact than when making 
it, even in the absence of material-specific dissipation. Roughness 
peaks increase local adhesion, which pins the contact line and in-
creases the pull-off force. By describing rough adhesion as the pin-
ning of an elastic line, we were able to derive parameter-free, 
quantitative expressions for the hysteresis in terms of a simple 
statistical roughness parameter. This analysis paves the way to bet-
ter understanding the role of surface roughness in adhesion and 

w retr
appr

= wint − eel ± keel (6)

eel =
E�

4
[h(1∕2)

rms
]2

(7)

[
h(α)
rms

]2
=

1

4π2 ∫ d
2q |

→

q |2αCiso(|
→

q |) (8)
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Fig. 5. Crack-front pinning explains adhesion hysteresis on real-world surfaces with multiscale roughness. (A) Power spectral density (PSD) of a nanocrystalline 
diamond (NCD) film extracted from more than 60 measurements (16), combining stylus profilometry, atomic force microscopy (AFM), and transmission electron micros-
copy (TEM). Black bars indicate the range of scales that dominate h(α)

rms
 (Eq. 8). (B) Position of the perimeter in the contact between a rubber sphere and a rough surface 

during approach. The perimeters on the left side are extracted from the experiment on NCD shown in Fig. 1, and the right side shows equilibrium positions of the perim-
eter in a crack perturbation simulation (see sections S1 and S2) on random roughness similar to NCD. The contact perimeter is pinned where the black lines are close to 
each other, while regions with a low density of lines indicate where the contact perimeter accelerates during an instability. The simulation predicts instabilities of various 
sizes, reaching a lateral extent up to several tens of micrometers. In the experiment, only the largest instabilities and the largest features of the contact line are visible 
because of the limited resolution of the camera and because we removed image noise using a spatially averaging filter. The positions of the perimeter are shown from 
jump into contact until the force reaches 0.64 mN. (C) Contact radius and normal force during approach and retraction of the experiment (diamonds) and simulation 
(continuous line) shown in (B). We extracted the intrinsic work of adhesion wint = 63 mJ/m2 used in the simulation by fitting the work of approach. Figure S6 shows that 
the PSD of the synthetic random roughness used in the simulation is close to the PSD of NCD at the length scales that dominate h(1∕2)rms .
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provides guidance for which scales of roughness to control to tune 
adhesion.

MATERIALS AND METHODS
Crack perturbation simulations
We use a crack perturbation model (9–11) to compute the energy 
release rate at the perimeter of the contact and solve for equilibrium 
with the local (equivalent) fracture energy wloc using the algorithm 
by Rosso and Krauth (45). The derivation of the crack perturbation 
equations and the mapping from surface roughness to the equivalent 
work-of-adhesion heterogeneity is provided in the Supplementary 
Materials.

Rough substrate
We contacted the PDMS lens against a nanocrystalline diamond 
(NCD) film of known roughness. The diamond film was deposited 
on a silicon wafer by chemical vapor deposition and, subsequently, 
hydrogen-terminated to avoid polar interactions and hydrogen bond 
formation between the PDMS lens and the rough substrate. The 
roughness of the film was determined by combining measurements 
from the millimeter to atomic scales using a stylus profilometer, atomic 
force microscopy (AFM), and transmission electron microscopy 
(TEM). The full experimental dataset along with the averaged PSD 
shown in Fig. 5B is available online (46). Details on the film growth 
and the multiscale topography characterization are provided in (15, 16).

Evaluating Eq. 8 requires the 2D or isotropic PSD of the surface 
topography, while only the 1D PSD is known. Following (7, 28), we 
converted the 1D PSD C1D to the isotropic 2D PSD using the ap-
proximation Ciso(q) ≃ πC1D(q)/q.

Synthesis of PDMS hemispheres
We synthesized PDMS hemispheres of 0.7-MPa Young’s modulus by 
hydrosilylation addition reaction. Vinyl-terminated PDMS V-41 
(weight-averaged molar mass Mw = 62,700 g/mol) as a monomer, 
tetrakis(dimethylsiloxy)silane as a tetra-functional cross-linker, and 
platinum carbonyl cyclo-vinyl methyl siloxane as a catalyst were 
procured from Gelest Inc. Monomer and cross-linker were first 
mixed in a molar ratio of 4:4 in an aluminum pan. The catalyst was 
added as 0.1 wt % of the total mixture, and lastly, the batch was degassed 
in a vacuum chamber for 5 min. Hemispherical lenses were cast on 
fluorinated glass dishes using a needle and a syringe and cured at 60°C 
for 3 days. Since the PDMS mixture has a higher surface energy than 
the fluorinated surface, the drops maintain a contact angle on the 
surface, giving the shape of a hemispherical lens. After the curing 
reaction, the lenses were transferred to cellulose extraction thimble 
for Soxhlet extraction where toluene refluxes at 130°C for 48 hours. 
PDMS lenses were again transferred to a fluorinated dish and dried 
in air for 12 hours. Last, the lenses were vacuum-dried at 60°C for 
16 hours and then used for experiments. Before using the lens in the 
experiment, the radius of curvature R = 1.25 mm was measured by 
fitting a three-point circle to a profile image obtained using an optical 
microscope (Olympus).

Indentation experiment
We measured the force and area during the approach and retraction 
of a PDMS hemisphere against a rough diamond film using the setup 
of Dalvi et al. (7). The lens and the substrate were approached at a 
constant rate of 60 nm/s until a repulsive force of 1 mN, and then 

retracted with the same rate. The PDMS hemisphere is transparent, 
allowing simultaneous measurement of the force and of the contact 
area (Fig.  1B). The video recording, provided in movie S1, has a 
frame interval of 0.3 s, but Fig. 5C shows values for the force and 
contact radius at intervals of ≈30 s. To remove the influence of 
roughness, we also carried out reference experiments on a flat sili-
con wafer covered with hydrophobic octadecyltrichlorosilane (see 
fig. S7). The Young’s modulus E = 0.7 MPa of the PDMS sphere was 
obtained by fitting the JKR theory to these experiments [see also (7)].

Extraction of contact line from video
We extracted the perimeter from each time frame of the video of the 
contact area. The contact area appears as a bright region in the vid-
eo, and we defined the contact perimeter as a contour line of a fixed 
level of gray. At the length scale of a few pixels, the position of the 
line is affected by noise in the image. To reduce the effect of noise on 
the position of the line, we subtracted the image of the contact area 
at maximum penetration and subsequently applied a spatial Gauss-
ian filter of variance 2 pixels. The lines shown in Fig. 5B therefore 
only reflect the position of the perimeter on coarse scales. Movie S2 
shows that these lines match the shape of the contact area at large 
scales and follow the same intermittent motion. The original video 
is available in the Supplementary Materials (movie S1).

Supplementary Materials
This PDF file includes:
Sections S1 to S4
Figs. S1 to S7
Legends for movies S1 and S2
References 
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