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Toward a continuum description of lubrication in highly
pressurized nanometer-wide constrictions: The
importance of accurate slip laws
Andrea Codrignani1,2, Stefan Peeters1, Hannes Holey1,2, Franziska Stief1,3, Daniele Savio1,4,
Lars Pastewka5, Gianpietro Moras1, Kerstin Falk1*, Michael Moseler1,2,3*

The Reynolds lubrication equation (RLE) is widely used to design sliding contacts in mechanical machinery.
While providing an excellent description of hydrodynamic lubrication, friction in boundary lubrication
regions is usually considered by empirical laws, because continuum theories are expected to fail for lubricant
film heights h0≪ 10 nm, especially in highly loaded tribosystems with normal pressures pn≫ 0.1 GPa. Here, the
performance of RLEs is validated by molecular dynamics simulations of pressurized (with pn = 0.2 to 1 GPa)
hexadecane in a gold converging-diverging channel with minimum gap heights h0 = 1.4 to 9.7 nm. For pn ≤
0.4 GPa and h0 ≥ 5 nm, agreement with the RLE requires accurate constitutive laws for pressure-dependent
density and viscosity. An additional nonlinear wall slip law relating wall slip velocities to local shear stresses
extends the RLE’s validity to even the most severe loading condition pn = 1 GPa and h0 = 1.4 nm. Our results
demonstrate an innovative route for continuum modeling of highly loaded tribological contacts under boun-
dary lubrication.
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INTRODUCTION
Modern, compact, and efficient tribological systems are often oper-
ated in mixed lubrication or even boundary lubrication, meaning
small gaps, frequently high pressures, and occasional solid-solid
contacts between the lubricated sliding surfaces (1). In particular,
the need for climate-friendly lubricants with low viscosities (2),
an increase in assembly precision of lubricated contacts for electric
vehicles (3), and high-performance coating techniques (4) that
allow smaller assembly tolerances have driven the shift to operating
devices in the mixed lubrication regime. Downsizing markedly in-
creases loads in tribological components (often in the gigapascal
range) resulting in an additional driving force toward boundary lu-
bricated contacts (5). Under such severe conditions, the film thick-
ness in typical applications can reach a few nanometers (6),
becoming comparable to the size of the lubricant molecules them-
selves. At this scale, a current state-of-the-art continuum descrip-
tion of lubricant flow is expected to lose its validity due to density
layering (7), solvation forces (8), the emergence of solid-like states
(9, 10), increased viscosities, or wall slip (11–16) [see also (17) for a
comprehensive review of atomistic simulations of confined lubri-
cant films].

The Reynolds lubrication equation (RLE) is the most commonly
used continuum equation for flow calculations in lubricated systems
(18). Although the RLE was proposed at the end of the 19th century
for incompressible laminar Newtonian flows (19), the past decades
have seen research in extending its applicability to lubricants

exhibiting compressibility, piezoviscosity, shear thinning, and cav-
itation (1, 11, 20). These extensions have rendered the RLE a predic-
tive description for elastohydrodynamic lubrication (EHL) of
technically relevant tribocontacts (20), provided quantitative con-
stitutive laws for compressibility and viscosity are used (21). In com-
bination with empirical friction coefficients for boundary
lubrication regions, the RLE is also used for mixed lubrication prob-
lems (22, 23). Technically, the RLE is used for local gap heights ex-
ceeding a certain threshold (of the order of 0.1 to 1 μm) to obtain the
hydrodynamic contribution to friction while smaller gaps are
assumed to be in solid-solid contact and modeled via a Coulomb-
Amontons friction law or a Bowden-Tabor (24) constant interfacial
shear stress. The choice of this threshold is more a matter of conve-
nience than of a physical reasoning. It would be very useful to
explore the lower gap size limits for a continuum description of
the lubricant flow—especially for high local pressures characteristic
for EHL contacts. By extending the RLE realm to smaller scales, the
importance of empirical solid-solid contact friction laws could be
reduced and therefore the predictive power of mixed lubrication cal-
culations would improve substantially.

In the present work, isothermal nonequilibrium molecular dy-
namics (MD) simulations of hexadecane in a gold converging-di-
verging channel (CDC) (depicted in Fig. 1, A and B) are
performed to generate realistic benchmark data representative of
mineral oils lubricating an asperity contact between two metal sur-
faces. In a previous related study, some of the authors have used this
alkane/gold model to study the onset of cavitation and its continu-
um description in a parallel channel with heterogeneous slip condi-
tions at moderate pressures (25), while the current work addresses
much higher pressures and a variation in the channel height. A pro-
found MD characterization of our atomistic hexadecane lubricant
model provides an equation of state ρ(p) as well as a pressure-
and shear rate–dependent constitutive law for the viscosity
ηðp; _γÞ. With these data, the validity limit of the RLE description
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for gaps h0 in the single-digit nanometer range and pressures p ap-
proaching the gigapascal regime is explored. A failure of such a tra-
ditional RLE treatment for high pressures can be traced back to the
violation of the no-slip boundary condition on the gold (111) facets
in the CDC. By a separate parametric MD study of hexadecane in
parallel gold channels (Fig. 1, C and D), the pressure dependence of
wall slip is quantified, and the existence of a constitutive law vs =
vs(τ, p) that relates local shear stress τ at the wall with slip velocity
vs is demonstrated. A vs(τ, p) law is also found for technically rele-
vant systems such as diamond-like carbon (DLC) channels filled
with poly-α-olefin (PAO) lubricant (Fig. 1E). Last, we show that
an extension of the RLE by vs = vs(τ, p) results in a model that
allows for a quantitative description of pressure and velocity profiles
in our MD simulations of CDCs for minimum gap sizes and local
pressure that are of the order of 1 nm and 1 GPa, respectively.

RESULTS
To explore the validity of the Reynolds equation in the context of
boundary lubrication applications, we consider a system at the
edge of the applicability range of continuum methods. A main sim-
ulation campaign is designed based on a narrow CDC. Figure 1A
shows the exact dimensions of the CDC whose geometry is de-
scribed by the height function

hðxÞ ¼
h0; jx j , b

h0 þ
hl � h0
l ðjx j � bÞ; b � jx j, lþ b

hl; l þ b � jx j

8
<

:
ð1Þ

with the height hl of the channel at the simulation cell boundaries,
the length l of the converging and diverging sections, the length 2b
of the parallel section in the middle of the CDC, and the targeted
central minimum gap heights h0 of 2, 3, 5, and 10 nm in our atom-
istic simulations. The function h(x) is used to carve the CDC out of
an lx = 201.9 nm × ly = 5 nm × lz = 26.6 nm block of crystalline gold
with (111) orientation in the z direction and periodic boundary

conditions in x and y. This void region is filled with n-hexadecane
molecules and pressurized to a target normal pressure pn at a tem-
perature T = 400 K. Various minimum gap heights h0 are estab-
lished by adjusting the number of lubricant molecules in the
channel. During pressure equilibration, the gap heights stabilize at
h0 = 1.4, 2.4, 4.8, and 9.7 nm. Shear flow is induced by translating
the bottommost gold atoms as a rigid layer at constant height with a
velocity vwx1 in the x direction, while the topmost gold atoms are kept
immobile (resulting in a wall velocity vwx2 ¼ 0). The resulting flow in
the hexadecane reaches a steady state after approximately 10 ns.

For an incompressible and isoviscous fluid in the CDC, the cor-
responding Reynolds equation

d
dx

h3

12η
dp
dx

� �

¼
d
dx
h
vwx1
2

ð2Þ

can be solved analytically by evaluating the integral

pðxÞ � pð0Þ ¼ 6ηvwx1

ðx

0

1
hðx0Þ2

�
c

hðx0Þ3

 !

dx0 ð3Þ

where η denotes the viscosity of the fluid at the respective pn and c is
an integration constant determined by the boundary condition pn =
p(l + 2b) = p(−l− 2b); see Materials andMethods for a detailed der-
ivation of the analytical solution. Analytical pressure profiles are
shown in Fig. 2 for a CDC with h(0) = h0 = 9.7 nm and normal pres-
sures pn = [0.2, 0.4, 0.6, 0.8, 1.0] GPa (see gray curves in the left most
column of Fig. 2). As expected, there is a pressure increase in the
converging section of the channel, followed by a drop in pressure
in the diverging part. The prefactor ηvwx1 in Eq. 3 indicates that
the amplitude of this pressure oscillation grows with driving veloc-
ity and external pressure (because the constant viscosity η in Eq. 3
increases with the applied pn).

To compare our atomistic simulations with such a continuum
solution, both wall surfaces are partitioned into x-bins with
width Δx = 0.4 nm, and 10-ns-long steady-state averages of the

Fig. 1. Atomistic models used in the MD simulations. (A) Converging-diverging channel of gold filled with hexadecane. Gold atoms are depicted in yellow and hex-
adecane molecules are depicted in blue. The z/x aspect axis ratio is 2.5 to improve the readability of the plot. Periodic boundaries are applied in x and y directions. (B)
Magnification of the dashed rectangle in (A) showing the atomic structure of the gold surfaces. (C and D) Parallel channels with Au surfaces having the same roughness
characteristics as the bottom and top walls of the CDC, namely, atomically flat Au(111) and Au(111) terraces, respectively. Only half of the hexadecane molecules are
shown. (E) Parallel channel formed by hydrogenated amorphous carbon surfaces (in black) and filled with 1-decene trimers (in blue). Because of the pressure equilibration
in the hexadecane and the elasticity of the walls of the CDC, there are deviations from the target values h0 = [2, 3, 5, 10] nm of the minimum gap height. Pressure
equilibration was performed with pn = [0.2, 0.4, 0.6, 0.8, 1] GPa in (A), pn = [0.1, 0.4, 0.6, 0.8, 1] GPa in (C), pn = [0.8, 1] GPa in (D), and pn = [0.2, 0.5, 1, 1.5, 2] GPa in
(E). During sliding with constant h0, there are small deviations from the nominal values of the average pressure (<10% of the values).
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forces acting from the fluid on the gold atoms in the respective bin
are recorded. Dividing the z- and x-force component through the
bin area lxΔx yields local pressures and frictional stresses, respec-
tively. The resulting pressure profiles p(x) on the bottom wall are
shown in Fig. 2 as blue stars. For the largest h0 = 9.7 nm and pres-
sures pn ≤ 0.6 GPa, satisfactory agreement between the atomistic p
(x) and the analytic RLE solution is observed. However, an increase
of the pressure to pn = 1 GPa leads to a strong overestimation of the
pressure variation along the CDC by the analytic solution (for both
simulated velocities 20 and 5 m/s).

Furthermore, the analytic Reynolds solutions of the frictional
stress profiles τtop(x) and τbot(x) acting on the top and bottom
walls, respectively, agree well with the MD profiles for h0 = 9.7
nm and pn ≤ 0.6 GPa (Fig. 3 and figs. S4 to S7). Even for h0 = 9.7
nm and pn = 1 GPa, the analytic τtop(x) is close to the MD result,
while τbot(x) deviates markedly from the atomistic benchmark (fig.
S6). Because the frictional stress profiles τtop(x) on the tilted parts of
the top wall includes additional contribution from the pressure
profile

τtopðxÞ ¼ � η
∂vxðx; zÞ

∂z
jz¼hðxÞ � pðxÞ

dhðxÞ
dx

ð4Þ

its agreement with MD is most likely a result of an error
cancellation.

Next, we investigate the validity and performance of a state-of-
the-art continuum description of our atomistic benchmark system
employing a no-slip Reynolds equation that takes into account com-
pressibility and piezoviscosity via an equation of state for the density
ρ(p) (11, 26) and a constitutive law for the viscosity ηðp; _γÞ, respec-
tively. Here, _γ denotes local shear rate and p denotes local pressure
in the channels. In a first step, bulk equilibrium MD simulations of
representative volume elements of the fluid were performed. A
volume V with periodic boundaries was filled with N hexadecane
molecules of molecular massM, and the resulting hydrostatic pres-
sure p was calculated. This provides data for the relationship of ρ =
NM/V with p (blue discs in Fig. 4A). The compressibility is then
described through the Tait-Murnaghan equation of state (27)

ρðpÞ ¼ ρ0 1þ
nTM

KTM
ðp � pTMÞ

� � 1
nTM

ð5Þ

by fitting the parameters ρ0, pTM, KTM, and nTM to the MD results.
The values of the fit parameters are given inMaterials andMethods.
The ρ(p) in Eq. 5 is in excellent agreement with the atomistic results
(see black solid line in Fig. 4A).

Fig. 2. Pressure profile in the CDC. In the top five rows, p(x) is shown for vwx1 ¼ 20 m=s, minimum gap heights h0 = [9.7, 4.8, 2.4, and 1.4] nm, and normal pressures pn =
[0.2, 0.4, 0.6, 0.8, 1.0] GPa. The bottom row reports the pressure profile for vwx1 ¼ 5 m=s and pn = 1.0 GPa. Blue stars represent the pressure p(x) obtained from 10-ns steady-
state averages over MD trajectories. Gray curves in the first column are the exact analytic solution for the incompressible isoviscous Reynolds equation. The numerical
solutions of the Reynolds equation with either no-slip or slip boundary condition are displayed as black and red curves, respectively. See fig. S1 for all vwx1 ¼ 5 m=s results
and figs. S2 and S3 for the corresponding density profiles.
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As a constitutive law for viscosity, the Carreau formula for shear
thinning (28) is chosen

ηð _γ; pÞ ¼ ηNðpÞ 1þ
_γ

_γ0ðpÞ

� �2
" #nCarðpÞ� 1

2

ð6Þ

and combined with the Roelands piezoviscosity formula (29)

ηNðpÞ ¼ η0exp ln
η0

η1

� �

� 1þ 1þ
p
pR

� �zR� �� �

ð7Þ

for the Newtonian viscosity ηN(p) in the Carreau equation. These
constitutive laws are calibrated through nonequilibrium MD simu-
lations of our pressurized lubricant volumes by applying shear flow
boundary conditions with a shear rate _γ (see details inMaterials and
Methods). Figure 4B depicts the dependence of viscosity η on _γ for
various pressures (blue discs). For each p, the parameters ηN(p),
_γ0ðpÞ, and nCar(p) are determined by fitting Eq. 6 to the MD
results. The Carreau model provides a good description of our hex-
adecane model (black solid lines in Fig. 4B). In a subsequent step,
Eq. 7 is fitted to the prefactors ηN(p) (blue discs in Fig. 4C) by ad-
justing the parameters η0, pR, and zR. The Roelands equation de-
scribes this dependence very well (black solid line in Fig. 4C).
Last, the remaining parameters _γ0ðpÞ and nCar(p) in Eq. 6 are
fitted with exponential functions _γ0ðpÞ ¼ _γ00expð� p=p _γ0Þ and
nCar(p) = n0exp(−p/pnCar

), and all fit results are combined to
obtain a continuous function for ηð _γ; pÞ. All fitting parameters
are provided in Materials and Methods. Note that the ηN(p) of
the used united atom force field (29) underestimates the experimen-
tal Newtonian viscosities (see diamonds and squares in Fig. 4C) by
approximately 50% in agreement with (30).

After having established sound constitutive equations ρ(p) and
ηð _γ; pÞ, we can now apply the compressible Reynolds equation

d
dx

ρh3

12η
dp
dx

� �

¼
d
dx

ρh
vx1 þ vx2

2

h i
ð8Þ

to our CDC geometry h(x). Here, the velocities of the lubricant at
the bottom and top wall are given by vx(x, 0) = vx1 and vx[x, h(x)] =
vx2, respectively. Note that in this form, no assumptions have yet
been made about the boundary conditions for the lubricant at the
walls. First, we apply no-slip conditions by assuming that vx2 ¼
vwx2 ¼ 0 m=s and vx1 ¼ vwx1 ¼ 20 and 5 m/s.

The black solid lines in Fig. 2 show the pressure profiles obtained
by a numerical solution of Eq. 8 with no-slip boundary conditions.
A comparison with the MD simulations of the CDC (blue stars)
leads to the conclusion that a compressible, piezoviscous Reynolds
equation without wall slip shares the same deficiencies as the in-
compressible isoviscous analytic solution. It exhibits a reasonable
agreement with the MD only as long as the gap height is large
and the pressure small enough (compare blue stars with black
lines for h0 ≥ 5 nm and pn ≤ 0.4 GPa in Fig. 2). For small gaps
and high pressures, the continuum model severely overestimates
the pressure variation p(x) along the sliding direction. A similar
conclusion holds for the frictional stress τtop(x) and τbot(x); see
Fig. 3 and figs. S4 to S7.

Next, a continuum velocity field vx(x, z) is computed from the
atomistic trajectories by partitioning the computational domain
in x-z-bins of the size 0.4 nm by 0.1 nm and performing 10-ns-
long steady-state averages over the atomic velocities in the bins.
The resulting vx(x, z) of the simulations with vwx1 ¼ 20 m=s are
shown in Fig. 5A. For each combination of h0 and pn, vx(x, z) is dis-
played for five different x values along the sliding direction (blue

Fig. 3. Frictional stress profile on the topwall of the CDC. Results for shear velocity vwx1 ¼ 20 m=s, minimumgap heights h0 = [9.7, 4.8, 1.4] nm, and normal pressures pn
= [0.2, 0.6, 1.0] GPa are shown. Blue dots represent the frictional stresses τtop(x) obtained from steady-state time averages of the local lateral forces (i.e., in the x direction)
on the top wall atoms in theMD trajectories. Gray curves in the first column represent the exact analytic solution for the incompressible isoviscous Reynolds equation. The
results of the numerical solution of the Reynolds equation with no-slip and slip boundary condition are displayed as black and red curves, respectively. See figs. S4 to S7
for the frictional stresses on the top and bottom walls of the full simulation campaign.
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stars). The driving velocity vwx1 ¼ 20 m=s of the lower wall is repre-
sented by blue arrows, which allows to identify violations of the no-
slip boundary condition at the lower Au(111) wall of the CDC in
certain cases. Alternatively, these cases can be identified in the
slip velocity profiles vsx1ðxÞ and v

s
x2ðxÞ at the lower and upper wall,

respectively (Fig. 5B). Especially at pn = 1 GPa, slip velocities vs ≫ 1
m/s occur approaching vs � vwx1 in the most extreme case h0 = 1.4
nm. At this film thickness, molecular layering (31) and confine-
ment-induced viscosity increases (32) have been noted experimen-
tally for hexadecane.

Conversely, the hexadecane seems to slip less on the top wall.
This is probably due to the more corrugated nanotopography of
the tilted sections of the top wall (see zoom in Fig. 1B), where a stair-
case of Au(111) terraces has been created by cutting the (111) ori-
ented gold crystal with a cutting plane tilted by an angle ϑ = 4.665°.
Experiments with tetradecane show that the slip lengths decrease
with increasing root mean square (RMS) roughness of polymer in-
terfaces (33), and previous MD simulations indicate that, although
boundary slip of strongly confined hexadecane occurs on atomically
smooth gold surfaces, no-slip boundary conditions are recovered
for randomly rough surfaces with RMS roughness of just 0.16 nm
(34). We tried to estimate a critical length of the Au(111) terraces in
our CDC that would reintroduce slip. Useful information comes

from (25), where pentane was confined between smooth walls
with sticking and slipping patches at moderate pressures (pn =
250 MPa). In particular, the walls in (25) featured an Au(111) crys-
tallographic orientation, with wall-fluid interactions similar to the
present work in the sticking domains, and a 10-fold reduced inter-
action in the slipping ones. Figure 2B in (25) shows transition
lengths of approximately 10 nm from no-slip to slip and vice
versa. This provides a first guess of 20 nm for the critical terrace
length to reintroduce slip in the system. Because the terraces in
our CDC are one order of magnitude smaller slip is strongly
suppressed.

To investigate the occurrence of slip on Au(111), we perform ad-
ditional MD simulations in simpler setups. The shear flow of hex-
adecane confined by parallel gold walls is studied for two different
gold surface structures: nominally flat Au(111) (Fig. 1C) and the
staircase of Au(111) terraces (Fig. 1D). The latter has exactly the
same roughness characteristic as the tilted sections of the top wall
of our CDC (see Fig. 1B). In both studies, we measure the occur-
rence of slip at the fluid/wall interface in gaps with nominal
heights ranging from 2 to 10 nm, a normal pressure ranging from
0.1 to 1 GPa, and top wall velocities vwx2 of up to 20 m/s [see Fig. 1 (C
and D) for details]. This wide parameter space allows us to cover the
transition from mild operating conditions, where the no-slip hy-
pothesis still holds, to extreme conditions, where substantial slip
occurs. More details on the MD setup are given in Materials and
Methods. Representative density and velocity profiles of both para-
metric studies are displayed in Fig. 6 for pn = 1 GPa
and vwx2 ¼ 20 m=s.

Figure 6A shows a snapshot of the hexadecane molecules in a 10-
nm-wide parallel channel between two Au(111) surfaces. The su-
perimposed density profile ρ(z) displays the well-known oscillations
in the vicinity of the walls (red curve) and a constant density of ρ(z)
≈ 1 g cm−3 in the bulk of the lubricant (7 nm ≤ z ≤ 13 nm). The
steady-state velocity profile vx(z) is represented by a green solid line.
A linear vx(z) indicates an expected Couette-type flow in the
channel. Instead of approaching the zero velocity of the lower
wall, the fluid velocity extrapolated to the lower Au(111) surface
is finite vxðz ¼ 5 nmÞ ¼ vsx1 ¼ 4 m=s. The same applies to the
upper wall, where vxðz ¼ 15 nmÞ ¼ vwx2 � vsx2 ¼ 16 m=s. The
overall slip velocity is computed as the average value from both
walls, i.e., vs ¼ ðvsx1 þ vsx2Þ=2 ¼ 4 m=s. Under the same conditions,
ρ(z) and vx(z) in the channel with the tilted Au(111) surface that
exhibits staircase-like surface structures display a similar behavior
(Fig. 6B) with only one exception—the absence of slip, i.e., vs ≈
0. It even seems that the last fluid layers at both walls move with
the wall velocity such that the extrapolation of the linear section
of vx(z) would yield a slightly negative vs. The lack of slip on Au
(111) staircases can also be seen in the velocity profiles of Fig. 5
in the converging or diverging sections of the CDC geometry.
Even if we decrease the height of the parallel channel to h0 = 2
nm, no slip is perceptible and still a clear Couette profile forms
(green curve in Fig. 6D) despite the strong fluid layering covering
the complete channel height; the red curve in Fig. 6D shows oscil-
lations of ρ(z) all over the channel.

Note that we observed vs ≈ 0 on terraced Au(111) for all simu-
lated gap heights h0, pressures pn, and wall velocities vwx2, and there-
fore, the assumption of no-slip boundary conditions is well justified
even for extremely narrow channels. This is in stark contrast to the

Fig. 4. Calibration of the equation of state and the viscous constitutive law by
MD. (A) Density-pressure relation of n-hexadecane at 400 K obtained from bulk
equilibrium MD simulations (blue discs) and fit by the Tait-Murnaghan equation
of state (black line). (B) Shear-thinning behavior of the hexadecane lubricant for
pressures ranging from 0.2 to 2 GPa. Blue discs represent the viscosities obtained
by nonequilibrium MD shearing simulations for various shear rates _γ. The MD data
are fitted by the Carreau equation (black lines). (C) Dependence of the viscosity
prefactor ηN of the Carreau equation on pressure p (blue discs). The ηN(p) values
are fitted by the Roelands equation (black line). The purple diamonds and the
green squares represent viscosity experiments at 429 K (75) and at 398 K (76),
respectively.

S C I ENCE ADVANCES | R E S EARCH ART I C L E

Codrignani et al., Sci. Adv. 9, eadi2649 (2023) 1 December 2023 5 of 17

D
ow

nloaded from
 https://w

w
w

.science.org on D
ecem

ber 12, 2023



h0 = 2 nm channel with flat Au(111) surfaces where the fluid flows
with almost constant velocity vxðzÞ � vwx2=2 (Fig. 6C) resulting
in vs � vwx2=2.

For the parallel channel with flat Au(111) walls, a large number
of simulations with 120 different parameter sets ðh0; pn; vwx2Þ is per-
formed. For each set, the slip velocity vs is determined from the in-
tersection of a linear fit to the steady-state velocity profile vx(z) with
the wall positions. At the same time, the shear stress τ is extracted
from the lateral forces on the walls. Figure 7A displays the relation
between vs and τ. The relationship vs(τ) is almost independent of the
gap height h0, while there is a strong dependence on the pressure pn.

The systematic occurrence of slip in presence of a flat wall can be
described with several models. The simplest model of a slip consti-
tutive law is a linear relationship

τðvsÞ ¼ kvs ð9Þ

where k is the Navier friction coefficient. The inverse of k could
serve as a measure of the slipperiness of a solid/fluid interface.
However, the slip length λ ¼ vs= _γ is often used to quantify slip.
Under the additional assumption of a Newtonian fluid, where
τ ¼ η _γ, we arrive at a relation between Navier friction and slip

Fig. 5. Velocity profiles of n-hexadecane in the CDC. (A) The results for the velocity profiles vx(x, z) at five different x positions are shown for a lower wall velocity of
vwx1 ¼ 20 m=s (depicted as blue arrows), minimum gap heights h0 = [9.7, 4.8, 1.4] nm (left to right), and normal pressures pn = [0.2, 0.6, 1.0] GPa (top to bottom). Blue stars
represent the data obtained from steady-state averages over MD trajectories. Results of the Reynolds equation with no-slip and slip boundary condition are displayed as
black and red curves, respectively. (B) Corresponding slip velocity profiles. Blue discs and stars represent the slip velocity vs(x) at the top and bottomwall, respectively. The
results of the Reynolds equation with slip boundary conditions are displayed as solid and dashed red curves for the bottom and top wall, respectively. See figs. S8 to S11
for the results of the full simulation campaign.
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length λ = η/k. Thus, within this linear theory, the slip length λ is a
constant independent of τ.

Although Eq. 9 works for certain applications, for example, in
plug flow of water in carbon nanotubes (35) under ambient condi-
tions, the simple linear behavior between τ and vs does not match
MD simulations of shear flow of polymers in smooth channels (36),
and obviously, it also cannot capture the nonlinear τ(vs) relation in
Fig. 7A. Consequently, more sophisticated slip laws are required.

In their pioneering work, Thompson and Troian (37) found a
correlation between the slip length λ and the shear rate _γ at the
wall, which they expressed through a power law relationship

λð _γÞ ¼ λ0 1 �
_γ
_γc

� �� 0:5

ð10Þ

Here, λ0 and _γc are constants that were used to fit the data ob-
tained by their extensive parametric study of the shear flow in an
isothermal Lennard-Jones fluid inside a channel with rigid
smooth walls. Later on, Niavarani and Priezjev (38) showed that
the Thompson-Troian slip law can be reformulated in terms of
shear stress and slip velocity by considering the proportionality
factor k = k(vs) to depend on slip velocity

τðvsÞ ¼ kðvsÞvs ¼ 2τc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
vs
vc

� �2
s

�
vs
vc

� �
2

4

3

5 vs
vc

� �

ð11Þ

where the two coefficients τc ¼ η _γc and vc ¼ 2 _γcλ0 can be directly

related to the two fitting coefficients λ0 and _γc presented by Thomp-
son and Troian. The characteristic stress τc represents an upper limit
to the shear stress which the fluid-wall interface can sustain, while vc
simply denotes the slip velocity at which the shear stress is roughly
at 80% of the maximum τc.

The inverse of Eq. 11

vsðτ; pÞ ¼
vcðpÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2

τcðpÞ½τcðpÞ � τ�

s

ð12Þ

is a nonlinear constitutive slip law that can be fitted to the MD data
in Fig. 7A. For each pressure p, we determine the coefficients τc(p)
and vc(p). Solid lines in Fig. 7A represent the individual fitted vs(τ)
curves. Although some deviations can be seen for high pressures,
the overall description of the underlyingMD data is good. If we nor-
malize wall shear stress τ by τc and slip velocity vs by vc, ourMDdata
collapse to a single master curve that follows y ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2=ð1 � xÞ

p

with x = τ/τc and y = vs/vc (Fig. 7B).
To arrive at a useful constitutive slip law that can be used in con-

tinuum mechanics calculation, a continuous function vs(τ, p) is re-
quired. The inset in Fig. 7B displays the dependencies τc(p) and
vc(p) on the simulated reference pressures. We arrive at a continu-
ous vs(τ, p) by parametrizing τc and vc as a function of the pressure
using

τcðpÞ ¼ Aτpþ Bτ ð13Þ

and

vcðpÞ ¼ AveBvp ð14Þ

The parameters Aτ, Bτ, Av, and Bv are constants that depend on
the roughness of the wall and on the fluid-wall interaction. The
values of these constants for hexadecane on the Au(111) surface
are provided in Materials and Methods.

Instead of fitting the atomistic slip velocity vs with the slip law
Eq. 12, an Eyring type expression

vsðτ; pÞ ¼ v0ðpÞsinh
τ

τ0ðpÞ

� �

ð15Þ

could be used (15, 39–41). Equation 15 has the advantage of being
derived from a molecular kinetic theory that considers stress assis-
ted thermally activated forward and backward jumps of lubricant
segments on solid surfaces (15, 39, 40), while Eq. 12 is only based
on an empirical relationship that fits atomistic simulations of an iso-
thermal Lennard-Jones fluid between rigid walls (37). Figure 7C
displays fits of Eq. 15 to our parallel gold channel data. The
overall agreement of the fits with the MD results is good, apart
from an underestimation of the atomistic vs for small τ and the
absence of a limiting shear stress in Eq. 15, which makes the fit
for high pressures difficult (see red curve in Fig. 7C). This
becomes also evident in the dimensionless version of this plot—
see vS

v0
versus τ

τ0
relation in Fig. 7D. We describe the pressure depen-

dence of the coefficients by

τ0ðpÞ ¼ Aτ0pþ Bτ0 ð16Þ

and

v0ðpÞ ¼ Av0e
Bv0pþCv0 p

4
ð17Þ

resulting in a satisfactory reproduction of the individual τ0 and v0

Fig. 6. Velocity and density profiles in the parallel channel MD simulations.
The time-averaged profiles are overlaid on top of atomistic snapshots to better
show their position with respect to the wall. The displayed profiles were obtained
at pn = 1 GPa and with a wall velocity vwx2 ¼ 20 m=s. (A and C) represent the
channel with atomically flat Au(111) walls, while (B andD) show the corresponding
results for the terraced Au(111) surfaces. The nominal gap height is h0 = 10 nm in
the top row of panels, while it is h0 = 2 nm in the bottom row.
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for the different pressures (insets in Fig. 7D). The values of the fit
constants Aτ0

, Bτ0
, Av0, Bv0, and Cv0 are provided in Materials

and Methods.
Because our Au/hexadecane model is of limited practical value

for real-world applications, we now consider PAO (a base oil used in
engine oils) sheared between parallel walls of DLC (a coating mate-
rial used in engines), because there is some indirect experimental
evidence of slip in this system (42). We investigate 1-decene
trimers (C30H62), representative of PAO4 between hydrogen-termi-
nated amorphous carbon walls in an additional simulation cam-
paign (see molecular setup in Fig. 1E) to check the transferability
of our findings to technically relevant lubricant/material combina-
tions. Again, a pronounced nonlinear vs versus τ relation is ob-
served [see vs(τ, p) data points in Fig. 7E] that can be fitted by
both the Thompson-Troian expression (Eq. 12, see dashed curves
in Fig. 7E) and the Eyring expression (Eq. 15, see solid curves in
Fig. 7E). Here, the Eyring law (Eq. 15) is definitively more suitable
to describe the simulations resulting in a nice collapse of the data in
the dimensionless vS

v0
versus τ

τ0
plot (Fig. 7F). As in the hexadecane/

Au(111) system, the τ0(p) and v0(p) relations are described by Eqs.
16 and 17, respectively (see insets in Fig. 7F and fitting coefficients
in Materials and Methods). Exploring the reasons for the superior

fit of the Eyring model in the PAO/DLC case would exceed the
scope of this article, and the underlying mechanisms should be ad-
dressed in a future investigation.

The slip laws (Eqs. 12 and 15) are introduced into the Reynolds
equation (Eq. 8) via the fluid velocities at the bottom and top walls
vx1 ¼ vwx1 þ vsx1 and vx2 ¼ vwx2 þ vsx2, respectively. The iterative algo-
rithm to solve this equation is described in Materials and Methods.
It is important to notice that we apply the slip model at both walls of
the CDC only where the walls have a flat Au(111) structure. In the
tilted sections of the top wall, no-slip conditions are imposed
because the resulting roughness prevents any slip as shown in
Fig. 6 (B and D) and discussed above.

The red solid lines in Figs. 2 and 3 represent the respective solu-
tions p(x) and τtop(x) of the compressible Reynolds equation ex-
tended by the slip model in Eq. 12. The comparison with our
atomistic CDC benchmark simulations shows that, for large gaps
and small pressures, the predictive power of the RLE is approxi-
mately as good as the no-slip RLE. Conversely, the agreement
between the Reynolds description and the MD for severe contact
conditions strongly improves if slip is taken into account. Although
there are small discrepancies of the pressure profile in the low-pres-
sure regime at pn = 0.2 GPa for the smallest gap height h0 = 1.4 nm,

Fig. 7. Wall slip velocity as a function of shear stress in the parallel channel with Au(111) surfaces. Each point corresponds to one MD shearing simulation with a
fixed parameter set ðh0; pn; vwx2Þ. The shape of themarkers represents the gap height h0 (stars: 2 nm, squares: 5 nm, discs: 10 nm), while the colors distinguish the reference
pressures p in the atomistic simulations. (A) Results vs(τ) for all considered parameter sets ðh0; pn; vwx2Þ. The lines are fits of the constitutive slip law (Eq. 12). (B) Master curve
for the slip velocity versus the shear stress obtained through normalization of the data in (A) by the characteristic velocity vc(p) and the limiting shear stress τc(p), re-
spectively. The gray line represents the dimensionless version of the constitutive law. Fit parameters τc(p) and vc(p) are shown in the insets as red discs, while black lines
are fit curves according to Eqs. 13 and 14. (C) Fit of the MD data in (A) using the Eyring model (Eq. 15). (D) Master curve obtained through normalization of the data in (C)
by the characteristic velocity v0(p) and shear stress τ0(p), which were fitted according to Eqs. 16 and 17. (E) Fits of the constitutive slip laws for the parallel DLC channels
lubricated by 1-decene trimers. The solid and dashed gray lines represent the fit with Eqs. 12 and 15, respectively. (F) Master curve obtained from the normalization of the
data in (E) using Eq. 15, with the insets showing the fit of v0(p) and τ0(p) with Eqs. 16 and 17.
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an increase in pn leads to an excellent quantitative match between
the atomistic and the slip Reynolds modeling of the CDC. The ve-
locity profiles in Fig. 5A also exhibit overall a good agreement
besides some small deviations in the central part of the channel
for the most severe cases. Furthermore, the slip RLE predicts the
slip velocity profiles at the top and bottom wall of the atomistic
CDC (compare red lines with blue symbols Fig. 5B), confirming
the accuracy of our nonlinear slip law. Results for the Eyring slip
model (Eq. 15) are shown in the Supplementary Materials (figs.
S13 to S18) and exhibit a similar agreement between the slip Rey-
nolds description and the MD. This indicates a certain insensitivity
in the description of the atomistic parallel channel slip velocities
with different constitutive laws.

Of course, it is of great importance how well our continuum
models describe the overall frictional behavior of the CDC MD
benchmark system. Figure 8 shows the average frictional stress at
the bottom wall

hτReynoldsi ¼
1
lx

ð lx
2

�
lx
2

τbotðxÞdx ð18Þ

in comparison to the corresponding MD values ⟨τMD⟩ for all our
benchmark calculations with vwx1 ¼ 20 m=s. Clearly, the no-slip
RLE severely overestimates the frictional driving forces of the atom-
istic CDC for large ⟨τMD⟩, while the slip RLE shows only a slight
underestimation.

DISCUSSION
Two objectives were pursued in this article. First, the validity of a
current state-of-the-art compressible and piezoviscous no-slip Rey-
nolds description (18) of strongly loaded tribological contacts was
explored. This was accomplished by comparing the lubricant shear
flow in an atomistic model tribocontact (n-hexadecane confined by
a CDC) with the results of a no-slip Reynolds equation whose equa-
tion of state and viscous law were calibrated by separate atomistic
simulations of bulk representative volume elements subject to

pressure or shear, respectively. It turns out that for sufficiently
large minimum gaps and moderate pressures (h0 ≥ 5 nm and pref
≤ 0.4 GPa) the no-slip RLE provides a reasonable and robust pre-
diction of our atomistic benchmark results. Previous MD simula-
tions suggested that Navier-Stokes hydrodynamics can be applied
down to around 10 molecular diameters (43) and a slight underes-
timation of the pressure variation along the CDC can be most likely
attributed to inaccurate low-pressure Newtonian viscosities in our
constitutive law.

As a second objective, we wanted to identify modifications of the
no-slip Reynolds equation to extend the observed validity limits to
higher pressures and smaller gaps. Various effects could be respon-
sible for the failure of continuum predictions for extremely con-
fined lubricants. Bulk constitutive laws can become inaccurate,
because layering affects the equation of state in narrow channels
(44), solvation pressure alters bulk viscosity laws (45), or viscosities
are strongly increased by the emergence of solid-like states (46).
These effects can be modeled by enhancing the equation of state
(44) and the viscosity law (45, 46) by an additional dependence
on gap height.

Such extensions are not necessary for the continuum description
of our CDC benchmark, as pronounced wall slip at the Au(111)/
hexadecane interfaces dominates lubricant flow for h0 ≤ 5 nm.
Therefore, we focused here on the question how to include wall
slip properly in a Reynolds framework. A possible approach could
consist of directly studying the influence of nanoscale effects on the
mass flow rates with MD simulations in narrow parallel channels
and introduce them via flow factors in the RLE (47, 48). Such a
modeling strategy would not only be able to consider wall slip, it
could also catch oscillations of solvation pressure and density layer-
ing. However, it would be hard to disentangle the various mecha-
nisms and provide a direct physical meaning of required fitting
parameters.

We decided to take a more transparent route by calibrating a
suitable slip constitutive law within a separate simulation campaign
with hexadecane in parallel channels. By varying channel height h0,
wall velocity vwx2, and normal pressure pn in the channel, a wide
range of wall slip velocities vs and wall shear stresses τ are obtained.
vs is determined by pn and τ, while the explicit dependence on h0
and vwx2 are negligible. This suggests that the slip velocity is simply
a function of the local stress state. The local slip laws vs(τ, p) in Eqs.
12 and 15 describe the parallel channel data well and their introduc-
tion into a wall slip Reynolds equation greatly improves the agree-
ment between atomistic and continuum simulations of the high-
pressure flow inside our CDC geometry. Although the plug flow
in the narrowest part of the h0 = 1.4 nm channel for pn = 1 GPa is
not exactly reproduced by the modified Reynolds equation, the
overall agreement in the pressure profiles is surprisingly good. Ob-
viously, slip at the Au(111)/hexadecane interface dominates the
high-pressure frictional response in the CDC, and therefore, the
exact description of the lubricant bulk rheology seems less
important.

Of course, in lubricants that adhere more strongly to the walls,
their bulk behavior starts to prevail, and the accuracy of constitutive
viscosity laws becomes crucial. In this case, it is mandatory to con-
sider shear thinning. To estimate when this transition from wall slip
to bulk shearing occurs, we consider the shear flow in a parallel
channel (Fig. 9A). We assume a shear thinning fluid obeying the

Fig. 8. The average frictional stress at the bottom wall of the CDC. The plot
compares the Reynolds results ⟨τReynolds⟩ with the atomistic ⟨τMD⟩ for
vwx1 ¼ 20 m=s. Black discs represent numerical calculations of the Reynolds equa-
tionwith no-slip and red stars with slip boundary conditions. Note that the average
frictional stress at the top wall provides an identical plot. See fig. S12 for the same
plot pertaining to vwx1 ¼ 5 m=s.
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Carreau constitutive law (Eq. 6) slipping at the bottom wall accord-
ing to Eq. 12. The general solution of this problem is given by a
Couette flow profile and force balance requires equality of the
shear stresses at the bottom wall and in the fluid

ηð _γÞ _γ ¼ 2τc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
vs
vc

� �2
s

�
vs
vc

� �
2

4

3

5 vs
vc

� �

with _γ

¼
v � vs
h

ð19Þ

After introducing V ¼ v=vc;Vs ¼ vs=vc;H ¼ h=hc; Γ0 ¼ _γ0= _γc
as well as a critical shear rate _γc ¼ τc=ηN (the shear rate for which
the Newtonian shear stress in the bulk _γηN equals the limiting shear
stress τc at the wall) and a corresponding critical height hc ¼ vc= _γc,
we arrive at the dimensionless equation

V � Vs

H
1þ

1
Γ0

V � Vs

H

� �2
" #ncar � 1

2

¼ 2VS½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ V2
s

q

� VS� ð20Þ

Thus, the dimensionless wall slip velocity VS can be deduced
from the intersection point of the two functions f slipðVsÞ ¼

2VS½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ V2
s

q

� VS� and f bulkðVsÞ ¼
V� Vs
H ½1þ

1
Γ0

V� Vs
H

� �2
�

ncar � 1
2

(see a graphical solution of Eq. 20 for different Γ0 in Fig. 9B). For
_γ0 ! 1, the Carreau fluid is completely Newtonian, and thus, for
large Γ0, shear thinning of the fluid becomes negligible. fbulk reduces
to V� Vs

H for Γ0 → ∞, and therefore, large enough V (intersect of fbulk
with abscissa) and small enough H (inverse slope of fbulk) bring the
dimensionless slip velocity Vs close to the dimensionless velocity V
of the top wall, i.e., we obtain complete slip combined with a fluid
plug sticking to the top wall. Approximately, the same behavior is

still observed for Γ0 = 1. However, upon further decrease of Γ0 the
dimensionless slip velocity Vs decreases substantially. In the most
extreme case, Γ0 → 0, the slip velocity approaches zero, indicating
complete sticking of the fluid at the lower wall. Complete stick can
be achieved as well by sufficiently increasing H, because fbulk ap-
proaches zero for H → ∞. Therefore, slip becomes unimportant
for macroscopic channels, as expected.

It is interesting to consider the pressure dependence of the crit-
ical quantities in our hexadecane/Au(111) model (Fig. 9C). The
critical channel height hc varies from 0.8 nm at p = 100 MPa to
2.2 nm at p = 1 GPa, indicating that for gap widths h0 ≫ 2 nm,
no-slip boundary conditions should result in an adequate descrip-
tion of our model system—this is fully in agreement with our atom-
istic MD simulation data. Furthermore, the nondimensional
Carreau shear rate parameter Γ0 is in the range between 0.5 and
2.2 for the pressure interval [0.1, 1] GPa. Thus, according to
Fig. 9B, our hexadecane/Au(111) tribosystems are increasingly
dominated by wall slip when the pressure is raised. This finding is
in perfect agreement with the atomistic slip velocities shown in
Fig. 5 and could explain limiting shear stresses observed in many
experiments (49).

Although the hexadecane/gold combination represents a realis-
tic material system, its technological relevance seems rather limited.
The interface between hexadecane and Au(111) is extremely slip-
pery. This raises the question whether such a strong wall slip can
be realized in technical applications. Ewen et al. (15) observed a
similar nonlinear vs(τ, p) law in atomistic simulations of hexadecane
between hematite surfaces covered with organic friction modifiers.
In addition, our additional simulations (Fig. 7C) show that the sub-
stantial wall slip of PAO in a parallel DLC channel obeys a vs(τ, p)
law that is well described by the Eyring expression (Eq. 15). First
simulations of the 1-decene trimers in a small CDC formed by H-

Fig. 9. A Carreau fluid in a parallel channel with slip at the bottom wall. (A) Sketch of the channel along with the most important quantities. (B) Graphical deter-
mination of the dimensionless slip velocity Vs via intersection of the two functions fslip (blue curve) and fbulk for Γ0 = 0.0001 (green curve), Γ0 = 0.01 (red curve), Γ0 = 1 (violet
curve), and Γ0 = ∞ (orange curve). A dimensionless top wall velocity V = 10, dimensionless channel height H = 1, and Carreau exponent nCar = 0.4 are chosen for this
example. (C) Pressure dependence of the critical channel height hc and of the dimensionless Carreau shear parameter Γ0 for our hexadecane/Au(111) model system.
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terminated amorphous carbon walls (Fig. 10A) indicate that the
RLE extended by this law can capture the flow in a technical
system under boundary lubrication on a quantitative level. The
pressure (Fig. 10B), density (Fig. 10C), wall frictional stress
(Fig. 10D), and wall slip velocity (Fig. 10E) profiles show that the
vs(τ, p) law of Fig. 7C is essential for an RLE description of PAO
in a DLC CDC with h0 = 1 nm and pn = 1 GPa. Note that in contrast
to the hexadecane/gold system, the DLC surfaces show no orienta-
tional slip dependence, such that slip boundary conditions are used
on both tilted and flat sections. Consequently, finite wall slip veloc-
ities close to those of the MD simulations are predicted by the RLE
(see Fig. 10E).

This encouraging result suggests the extension of our work to
more complex materials (such as DLCs, metal oxides, Si-based

ceramics or surfaces covered with friction modifiers) and more
complex lubricants [such as PAOs, ester oils, or water-based lubri-
cants without or with additives (50)]. Such lubricant/material com-
binations are used in many applications and exploring the
competition between wall slip, bulk shear thinning and layering
effects in such systems under small gap/high pressure conditions
could pave the way to a predictive modeling of friction in the boun-
dary lubrication regime.

MATERIALS AND METHODS
In this section, we will first present the analytical solution of the in-
compressible, isoviscous RLE for our CDC geometry followed by a
description of the MD approach that we used to investigate the

Fig. 10. ACDC consisting of H-terminated amorphous carbonwalls lubricated by 1-decene trimers. (A) Geometry of the simulation system, following the same color
scheme as in Fig. 1E. The lateral size of the DLC CDC is scaled down by one order of magnitude compared to the gold CDC. The inset in the top right corner shows a detail
of the top wall-lubricant interface, highlighting the surface roughness of the amorphous wall, which is of the order of magnitude of the C─C and C─H chemical bonds. (B)
Pressure, (C) density, (D) frictional stress, and (E) slip velocities profiles of the DLC CDC evaluated by MD and RLE. Blue discs in (B) to (D) represent the data obtained from
steady-state averages over MD trajectories. The results of the Reynolds equation with no-slip and slip boundary condition are displayed as black and red curves, respec-
tively. Blue discs and stars in (E) represent the slip velocity vs(x) at the top and bottom wall, respectively. The results of the Reynolds equation with slip boundary con-
ditions are displayed as solid and dashed red curves for the bottom and top wall, respectively. Large oscillations observed at the center of the CDC in the MD simulations
in (B) to (D) are due to small sampling volume. See the Supplementary Materials for more details.
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effects of compressibility, piezoviscosity, and slip at the atomistic
level. Subsequently, we present the derivation of the constitutive
laws and their implementation in the Reynolds solver.

Analytical solution of the incompressible, isoviscous
Reynolds equation of the CDC
In Figs. 2 and 3, an analytical RLE solution of the CDC is presented.
Here, we derive this solution starting with the height function h(x)
given by Eq. 1 and transform it into a dimensionless form by intro-
ducing ξ ¼ hl

h0
, κ ¼ l

b, and X ¼
x
l

HðXÞ ¼
hðlÞ
h0
¼

1; jX j , κ
1þ ðξ � 1ÞðjX j � κÞ; κ � jX j , 1þ κ

ξ; 1þ κ � jX j � 1þ 2κ

8
<

:
ð21Þ

For the stress on the top wall, we will need later

dhðxÞ
dx
¼

0; jx j , b
a sgnðxÞ; b � jx j , lþ b

0; lþ b � jx j

8
<

:
ð22Þ

where a ¼ hl � h0
l . The Reynolds equation (Eq. 2) is integrated twice to

yield the pressure (Eq. 3)

pðxÞ � pð0Þ ¼ 6ηvwx1

ðx

0

1
hðx0Þ2

�
c

hðx0Þ3

 !

dx0

Depending on x, we split the integral into up to three subinteg-
rals, e.g., for b ≤ x < l + b

pðxÞ � pð0Þ

¼ 6ηvwx1

ðb

0

1
h0

2 �
c
h0

3

� �

dx0 þ
ðx

b

1
hðx0Þ2

�
c
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dx0
" #

¼ 6ηvwx1
1
h02
�

c
h0

3

� �

bþ
1
a

ðhðxÞ

h0

1
h02
�

c
h03

� �

dh0
" #

The resulting explicit expression for the pressure

pðxÞ � pð0Þ

¼ 6ηvwx1

1
h20
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sgnðxÞ 1
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� c

h30

� �
bþ 1

2a � 2 1
hðxÞ �

1
h0

� �
þ c 1

h2ðxÞ �
1
h20

� �h in o
;

b� jx j, lþ b

sgnðxÞ 1
h20
� c

h30

� �
bþ 1

2a � 2 1
hl
� 1

h0

� �
þ c 1

h2l
� 1

h20

� �h in o

þ 1
h2l
� c

h3l

� �
½x � sgnðxÞðlþ bÞ�; lþ b� jx j

8
>>>>>>>>>><

>>>>>>>>>>:
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can be expressed in nondimensional form

pðxÞ � pð0Þ
ηvwx1
h0

h0
6l
¼ PðXÞ

¼

ð1 � CÞX; jX j , κ

sgnðXÞ
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ð1 � CÞκþ 1
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1
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�
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;
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1
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þ C 1
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þ 1
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1
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with C ¼ c
h0
.

From

p½+ðl þ 2bÞ� � pð0Þ

¼+6ηvwx1
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1
hl
�

1
h0

� �

þ c
1
h2l
�

1
h2
0

� �� �

þ
1
h2l
�

c
h3
l

� �

b

)

and the assumption that the pressure at the entrance and at the exit
of the CDC are the same [i.e., 0 = p(l + 2b) − p(−l− 2b)], a condition
for c is calculated

1þ
1
h2l
h20

0

@

1

A b
l
�

1
hl
h0
� 1

� �
1
hl
h0

� 1

 !

¼
c
h0

1þ
1
h3l
h30

0

@

1

A b
l
�

1

2 hl
h0
� 1

� �
1
h2l
h20

� 1

0

@

1

A

2

4

3

5

leading to

c
h0
¼ C ¼

ðξ2 þ 1Þκþ ξ

ξ2 þ 1
ξ

� �
κþ 1þξ

2

ð25Þ

The frictional stress on the bottom and top wall
Starting from the velocity profile that underlies the Reynolds equa-
tion

vxðx; zÞ ¼
1
2η
∂p
∂x
ðz2 � hzÞ þ

vwx1
h
ðh � zÞ

¼ vwx1ðh � zÞ
1
h
�

1
2ηvwx1

∂p
∂x
z

� �

ð26Þ

inserting

1
2ηvwx1

dp
dx
¼

3
h2 �

3c
h3

ð27Þ
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results in

vxðx; zÞ ¼ vwx1ðh � zÞ
1
h
þ

3c
h3 �

3
h2

� �

z
� �

ð28Þ

as well as

∂vxðx; zÞ
∂z

¼ � vwx1
1
h
þ

3c
h3 �

3
h2

� �

z
� �

þ vwx1ðh � zÞ

�
3c
h3 �

3
h2

� �

ð29Þ

and finally in

τbotðxÞ ¼ η
∂vxðx; zÞ

∂z
jz¼0 ¼

ηvwx1
h

3c
h
� 4

� �

ð30Þ

or as a dimensionless expression

τbotðxÞ
ηvwx1
h0

¼
1
H

3C
H
� 4

� �

ð31Þ

In the same way the stress on the top wall is obtained

τtopðxÞ ¼ � η
∂vxðx; zÞ

∂z
jz¼h � pðxÞ

dhðxÞ
dx

¼ �
ηvwx1
h

2 �
3c
h

� �

� pðxÞ
dhðxÞ
dx

¼ �
ηvwx1
h0

1
H

2 �
3C
H

� �

� pðxÞ
dhðxÞ
dx

ð32Þ

Molecular dynamics
Hexadecane in gold channels
For theMD simulations of n-hexadecane (C16H34) flowing in nano-
meter-sized gold channels, the Large-scale Atomic/Molecular Mas-
sively Parallel Simulator (LAMMPS) software suite (51) is used. All
simulations use a velocity-Verlet algorithm with a time step of 1 fs.
The embedded atom method (EAM) potential by Foiles et al. (52)
models the atomic interactions within gold walls, while the Trans-
ferable Potentials for Phase Equilibria–United Atom (TraPPE-UA)
force field byMartin and Siepmann (29) is applied for the fluid. The
Lennard-Jones gold parameters from Heinz et al. (53) combined
with the Lorentz-Berthelot mixing rules describe the interactions
between walls and fluid [for instance resulting in an adsorption
energy of hexadecane on Au(111) in agreement with the experimen-
tally measured 16 meV per methyl group (54)].

Three different nanochannel geometries are considered. The
first one (A) consists of the CDC in Fig. 1A, for which the compar-
ison between continuum and MD is performed. The two others,
used for the parameterization of the slip laws and shown in Fig. 1
(C and D), consist of parallel channels with either smooth (C) or
rough surfaces (D). In all cases, the computational boxes are peri-
odic in both the streamwise and spanwise direction. In addition to
the shown setups, bulk simulations of pure n-hexadecane are per-
formed for the parameterization of its density-pressure and viscos-
ity-pressure relationships.

The geometrical parameters and conditions of the simulations
are summarized in Fig. 1. For the atomistic models, the reference
gap height h0 is defined as the distance between the average z posi-
tions of the gold layers in the top and bottom wall in contact with

the fluid minus the van der Waals radius of a gold atom. In the
CDC, this corresponds to the effective gap height in the narrowest
section of Fig. 1A. During the equilibration and shearing steps of
each simulation, the gap height is kept fixed (not taking into
account small fluctuations due to elastic deformations of the gold
material). Thus, the number of hexadecane molecules in the gap
is initialized to ensure that the fluid pressure pn after equilibration
corresponds approximately to the desired target value.

The walls in these systems are made of crystalline gold. In the
smooth case, the face-centered cubic (FCC) crystal structure is ori-
ented to present a (111) surface in contact with the fluid. The rough
surface in Fig. 1C is obtained by rotating the crystalline lattice by ϑ =
4.665° around the y axis, to mimic the same atomic roughness as in
the slanted upper wall of the geometry in Fig. 1A. Each wall is
divided into two domains. Farthest from the fluid, a rigid slab of
a single atomic layer allows to apply velocity boundary conditions
to the MD system, i.e., vwx1 ¼ 0 at bottom wall and a finite vwx2 at the
top wall. Apart from these frozen layers, the walls are thermalized at
T = 400 K. A Langevin thermostat (55) with a damping time cons-
tant of 0.1 ps is used, acting only in the z and y directions to avoid
affecting the system dynamics during shearing. In the fluid, viscous
heat generation under shearing and limited heat removal through
the walls due to wall slip (56, 57) can cause thermal drift during
time. To reduce this effect, which would invalidate a meaningful
comparison with the steady-state and isothermal Reynolds equa-
tion, a Nosé-Hoover thermostat in the spanwise y direction (58)
with a damping time constant of 0.1 ps is applied to the hexadecane
molecules. With this thermostating scheme, local temperatures in
the hexadecane and in the Au vary by less than 1% of the target tem-
perature T = 400 K [see fig. S19 for a temperature profile in the par-
allel Au(111) channel with pn = 1 GPa, h0 = 2 nm and 20 m/s wall
velocity]. It should be noted that schemes that thermalize only the
walls result in lubricant temperatures that substantially exceed the
target temperatures of the walls (30, 59)—especially for high sliding
velocities. Pahlavan and Freund (59) had a closer look at the effect of
different thermostat schemes on wall slip and concluded that an iso-
thermal treatment of a fluid between flexible crystalline walls results
in a unbounded slip length for increasing shear rates, while the tem-
perature increase in fluids that are cooled by the walls leads to a lev-
eling off of λð _γÞ for high _γ. Also in our channel with flexible Au
(111) walls, the isothermal hexadecane shows an unbound asymp-
totic λð _γÞ (see fig. S20). Previously, the Thompson-Troian asymp-
totic behavior of λð _γÞ was attributed to the use of fixed walls (60).
PAO in DLC channels
A similar computational setup was adopted for the MD simulation
of 1-decene trimers (C30H62) flowing between DLC surfaces. While
molecular interactions are described by the original optimized po-
tential for liquid simulations (OPLS) potential (61), bulk and
surface atoms of the DLC walls are described using the same
OPLS analytic form with parameters specifically developed to rep-
resent the geometry and the elastic constants of amorphous carbon
structures (62). An earlier version of this force field was used to suc-
cessfully model DLC walls lubricated by hydrocarbons in a previous
work (63). The geometries of the parallel and the converging-di-
verging DLC channels lubricated by 1-decene trimers are shown
in Figs. 1E and 10A, respectively.

The amorphous carbon walls are prepared following a melt-
quench protocol (64). First, a random distribution of C atoms
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with a density of 2.5 g/cm3 is heated up at 9000 K for 10 ps in fully
periodic orthorhombic cells. Then, the system is quenched down to
5000 K in 10 ps and then to 300 K in another 15 ps. Afterward, the
system is annealed at 1000 K for 30 ps and eventually relaxed using
the Fast Inertial Relaxation Engine (FIRE) algorithm (65), with a
force tolerance of 10−3 eV/Å. The screened Reactive Bond Order
Potential (REBO2) potential (66) is adopted during this protocol,
as well as a time step of 0.1 fs and a Langevin thermostat with a
damping time constant of 0.1 ps. The size of the simulation cells
used to generate the two parallel walls is 80 Å by 40 Å by 20 Å,
matching the desired size of the walls. The melt-quench protocol
is performed in cells of 100 Å by 40 Å by 20 Å and 100 Å by 40
Å by 32 Å for the bottom and top walls of the DLC CDC, respec-
tively, and these systems are replicated once along the x direction to
obtain the desired size of the CDC. The dangling bonds of carbon
atoms resulting from releasing periodicity along the vertical direc-
tion are saturated using H atoms. The surface sp2-hybridized C
atoms bound to two H atoms are iteratively replaced by H termina-
tions. H atoms with dangling bonds are removed. This procedure
leads to a termination density of approximately 12 nm−2. To esti-
mate the surface roughness of the DLC CDC walls, we calculate
the RMS roughness of the bottom and the top walls by dividing
the simulation cell into two-dimensional bins along the xy plane
and using the following formula

Rq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
Nbins

XNbins

i¼1
ðzi � zÞ2

v
u
u
t

where Nbins, zi, and z represent the total number of bins, the highest
z coordinate of the atoms in bin i, and the average height of the
system, respectively. For this calculation, the coordinates of the
top wall are flipped vertically. By choosing a size of 2 Å by 2 Å
for the bins, we obtain values for Rq of 0.16 and 0.43 nm for the
bottom and the top walls, respectively. In particular, the first
value indicates that the height variations on the flat DLC surface
are of the order of the C─C bonds, while the second value repre-
sents a typical nanoscale roughness of experimental ultrasmooth
DLC surfaces (67).

For the subsequent sliding simulations, a time step of 0.5 fs is
used. The atoms belonging to the top- and bottommost domains
of the parallel channel are kept rigid and fixed, respectively. A cons-
tant velocity vwx2 is applied to the rigid atoms, while the velocity of
the fixed atoms vwx1 is set to zero. The thickness of these constrained
regions is 5 Å. In the DLC CDC, the rigid and fixed regions are in-
verted, similarly to the case of the gold channels. All the systems are
equilibrated for 0.5 ns at constant pressure, using the pressure-cou-
pling algorithm described in (68). A constant velocity is applied to
the rigid atoms, and the average height of the system is calculated
during the last 250 ps of equilibration. The position of the top wall is
then gradually adjusted to match the average height by imposing a
constant velocity along the vertical direction for 60 ps. The sliding
simulations at constant height are run for 5.0 and 2.5 ns to calculate
the slip properties in the parallel channel and the CDC, respectively.
The temperature of the systems is held constant by a Nosé-Hoover
thermostat, with a target temperature of 330 K and a damping time
constant of 0.1 ps, applied to all unconstrained atoms.

Constitutive laws for the fluid density and viscosity as well
as wall slip
Equation of state
We use the Tait-Murnaghan (27) equation of state (Eq. 5) to model
the dependence of hexadecane fluid density on pressure. The coef-
ficients ρ0 = 700 kg/m3, pTM = 0.101 MPa, KTM = 0.557 GPa, and
nTM = 7.33 are calibrated from equilibrium MD simulations of bulk
n-hexadecane at T = 400 K (69, 70).
Viscous constitutive law
The constitutive law for the dynamic fluid viscosity η accounts for
its dependence on both the pressure and the shear rate. The overall
viscosity is given by

ηð _γ; pÞ ¼ η0exp ln
η0

η1

� �

� 1þ 1þ
p
pR

� �zR� �� �

� 1þ
_γ

_γ0ðpÞ

� �2
" #nCarðpÞ� 1

2

combining the Roelands piezoviscosity formula (Eq. 29) with the
Carreau equation (Eq. 28). The pressure dependence of the
Carreau parameters is modeled via _γ0ðpÞ ¼ _γ00expð� p=p _γ0Þ and
nCar(p) = n0exp(−p/pnCar

). Here, η∞ = 0.06315 mPas is taken from
Roelands’ original work (71), while the coefficients η0 = 0.37 mPas,
pR = 0.1 GPa, zR = 0.51, _γ00 = 13.95 GHz,
p _γ0 ¼ 0:5022 GPa; n0 ¼ 0:6216, and pnCar

= 2.028 GPa are calibrated
through bulk nonequilibrium MD simulations with the SLLOD
method (72). Note that similar viscosities are obtained by determin-
ing the slopes _γ of the Couette velocity profiles in the constrained
geometry of Fig. 1 (C and D) and applying η ¼ τ= _γ.

Parameters for PAO were obtained in a similar fashion. The
compressibility, shear-thinning, and piezoviscosity of the PAO
model lubricant is modeled using Eqs. 5, 6, and 7, respectively.
The pressure dependence of the Carreau parameters nCar(p) and
_γ0ðpÞ is described by power law expressions

nCarðpÞ ¼ n0 �
ηNðpÞ
η0;n

� �d
and _γ0ðpÞ ¼ _γ0;0 �

ηNðpÞ
η0; _γ0

� �c
, where ηN(p) is

the Newtonian viscosity according to Eq. 5. The Tait-Murnaghan
parameters at T = 330 K are given by

ρ0 ¼ 783:8
kg
m3 ; pTM ¼ 0:1 MPa;KTM ¼ 1:295 GPa; nTM ¼ 9:726

Furthermore, parameters for the Roelands piezoviscosity and
Carreau shear-thinning equation are given by

η0 ¼ 0:087 mPa�s; pR ¼ 196:2 Pa; zR ¼ 0:22; η1 ¼ 0:06315 mPa�s

and

n0 ¼ 0:149; η0;n ¼ 2:004 Pa�s; d ¼ � 0:196; _γ0;0 ¼ 25:9MHz; η0; _γ0

¼ 7:871 Pa�s; c ¼ � 0:606

respectively.
Quantification of slip at the fluid/wall interface
To measure the slip velocity at the walls of the parallel channel, we
fit a Couette profile to themean velocity profiles after the simulation
reached the steady state. The overall sampling time is 5 ns in the
parallel channel hexadecane simulations. The intersections of the
extrapolated Couette profile with walls provides the slip velocities
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vsx1 and vsx2. The position of the wall is defined where the density
profile reaches zero. In the simulation with the parallel channel,
the top wall is translated with a fixed velocity vwx2, and the bottom
is fixed so that the overall slip velocity is the taken as the average of
the absolute values of the slip velocities at both walls vs ¼

jvsx1jþjv
s
x2j

2 .
The wall shear stress is computed by measuring the overall interac-
tion force between the fluid and the wall in x direction divided by
the wall surface area.
Parameters of the slip law
For each pressure, the parameters of the vs(τ) curves in Fig. 7A are
obtained by an orthogonal distance regression fit of Eq. 12 or Eq. 15
to the data points in Fig. 7A resulting in the τc(p) and vc(p) data
points in the inset of Fig. 7B and the τ0(p) and v0(p) data points
in the inset of Fig. 7D, respectively. In a second step, these data
points are fitted by Eqs. 13 and 14 or Eqs. 16 and 17. This yields
the following parameters

Aτ ¼ 8:058� 10� 3;Bτ ¼ 17:44 MPa;Av ¼ 24:126 m=s; and Bv
¼ � 2:555 GPa� 1

and

Aτ0 ¼ � 5:291� 10� 3;Bτ0 ¼ 7:47 MPa
Av0 ¼ 6:038 m=s;Bv0 ¼ � 4:656 GPa� 1; and Cv0 ¼ � 5:881 GPa� 4

The slip in the DLC/PAO system was described by the Eyring
expression (Eq. 15) and the relations τ0(p) and v0(p) are described
by Eqs. 16 and 17 with parameters

Aτ0 ¼ 4:088� 10� 3;Bτ0 ¼ 9:66 MPa

Av0 ¼ 0:072 m=s;Bv0 ¼ � 1:094 GPa� 1; and Cv0 ¼ � 2:382 GPa� 4

Numerical solution of the Reynolds equation
The Reynolds equation (Eq. 8) is coupled with the equation of state
(Eq. 5), the viscous constitutive law (Eqs. 6 and 7), and the wall slip
laws (Eq. 12 or Eq. 15). The system is discretized through a finite
volume approach according to Arghir et al. (73) and solved with
an iterative approach with Anderson relaxation (74) for the pressure
profile p(x) and simple relaxation for the viscosities and slip veloc-
ities. For a given gap height h(x), and after the initialization of the
viscosity, density, and slip velocity profiles, the solution of the algo-
rithm follows this scheme:

1) Solution of the compressible Reynolds equation (Eq. 8).
2) Computation of the density and viscosity.
3) Computation of the shear rate at the bottom and top wall.
4) Computation of the shear stress at both walls τ ¼ η _γ
5) Application of the slip constitutive law

vsðτ; pÞ ¼
vcðpÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2

τcðpÞ½τcðpÞ � τ�

s

or vsðτ; pÞ

¼ v0ðpÞsinh
τ

τ0ðpÞ

� �

where the coefficients τc and vc (or τ0 and v0) have been updated
according to the local pressure in each domain point. After this

step, the slip velocities vsx1ðxÞ and vsx2ðxÞ at the bottom and top
wall are available.

1) Anderson relaxation of the pressure profile and simple relax-
ation of the local viscosity and slip velocities.

2) Computation of the pressure residuum

εp ¼

ð lx
2

�
lx
2

dx jpnewðxÞ � poldðxÞj

ð lx
2

�
lx
2

dx jpnewðxÞj

3) If the residuum ɛp is bigger than the tolerance, go back to
point 1.

The continuum simulations in this work used a 250-point dis-
cretization grid, an Anderson memory of five previous pressures
and an Anderson α = 0.1. An underrelaxation factor of 0.01 for
the viscosity and slip velocities is used. Reaching convergence at re-
siduum ɛp < 10−7, typically require 200 to 2000 iteration steps and
approximately 5 to 50 s on a single core of a personal laptop.

Supplementary Materials
This PDF file includes:
Figs. S1 to S20
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