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Yielding under compression and the polyamorphic transition in silicon
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We investigate the behavior of amorphous silicon under hydrostatic compression using molecular simulations.
During compression, amorphous silicon undergoes a transformation from a low-density to a high-density
structure. Depending on the temperature and the compression rate, the transformation occurs in a pressure
range between 6 and 16 GPa. Ensemble-averaged density and elastic constants change discontinuously across
the transition. Densification of individual glassy samples occurs through a series of discrete plastic events,
each of which is accompanied by a vanishing shear modulus. This is the signature of a series of elastic
instabilities, similar to shear transformation zones observed during shear yielding of glasses. We compare
the structure obtained during compression with a quasiequilibrium form of amorphous silicon obtained by
quenching a melt at constant pressure. This gives structures identical to compression at low and high pressure,
but the transition between low- and high-pressure structures occurs gradually rather than discontinuously. Our
observations indicate that the polyamorphic transition has the characteristics of a yield transition that occurs
under compression instead of shear.
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I. INTRODUCTION

Materials can exist in structurally distinct forms in their
crystalline state, a property which is called polymorphism [1].
Which form is actually present depends on the external condi-
tions of temperature and pressure and on the way the material
is formed and processed afterwards. One form can trans-
form into another, for example, when increasing the pressure
above some critical value. In crystals, pressure-induced phase
transitions are commonly between equilibrium states of the
system [2–4]. Amorphous solids, however, are intrinsically
out-of-equilibrium, yet pressure-induced transformations be-
tween distinct amorphous forms are possible [5–10].

Materials with multiple amorphous modifications are
called polyamorphic [5–8,10]. One prominent example of a
material featuring such a polyamorphic phase transition is
silicon [11–19]. Silicon crystallizes into the diamond cubic
phase under ambient conditions and transforms into the β-Sn
phase upon hydrostatic compression [20]. An indication for
a polyamorphic transition in the corresponding amorphous
form is that the melting temperature T m in silicon decreases
with increasing pressure, dT m/dP < 0 [see Fig. 1(a)], mean-
ing that the liquid phase is denser than the low-temperature
diamond cubic crystal. A maximum in the melting curve,
which for silicon is expected to occur at negative pressure
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[7,21–23], is typically explained by a “two-state” model [24].
This model assumes that low-density and high-density phases
coexist in the liquid state, with the proportion of high-density
domains increasing with pressure, thus leading to a pressure-
driven transition from a low-density to a high-density liquid
phase [7,10,13,22,25–28]. A transition between two amor-
phous modifications is expected to reflect this liquid-liquid
phase transition.

Experimental studies have revealed that amorphous silicon
(aSi) can indeed exist in two distinct structures. Upon com-
pression, aSi transforms from a low-density structure (LDA)
to a high-density structure (HDA) at a critical pressure be-
tween Pc ≈ 12 and 16 GPa [11,15,29,30]. A further increase
in hydrostatic pressure results in recrystallization, indicating
that the HDA phase is metastable [16,20]. These experi-
ments were supported by early numerical simulations, which
showed a transition from an initially fourfold-coordinated
LDA structure to an HDA structure with fivefold-coordinated
atoms [14], or to a very-high-density amorphous (VHDA)
structure with even higher coordination [12]. This structural
transformation of aSi has been numerically investigated by
multiple authors since, always showing a coexistence of LDA
and HDA regions that sequentially transform to HDA (or
VHDA) during compression [12,14,18,19]. Molecular simula-
tions have recently also been shown to yield recrystallization
of the HDA phase [19].

There are multiple well-documented mechanisms that lead
to structural transitions between polymorphs. Besides equi-
librium phase transitions, crystalline materials have ultimate
stability limits where the crystalline lattice collapses as a
consequence of an elastic or dynamic instability [31–34].
The result of such an instability is that all atoms in a
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FIG. 1. (a) Pressure-temperature phase diagram of silicon obtained from atomistic simulations via phase-coexistence calculations. (Data
are from Ref. [18].) Si-I is the diamond cubic and Si-II is the β-Sn phase of silicon. (b) Density of amorphous silicon as a function of
hydrostatic pressure. The dashed and solid lines are glasses hydrostatically compressed in AQC simulations and initially prepared at vanishing
pressure. Dots and triangles represent glasses quenched from the liquid while maintaining the constant nonzero hydrostatic pressure. Lines
and open symbols indicate the ensemble mean while shaded areas and error bars mark the standard deviation. The vertical arrow Peq marks
the critical pressure for the expected equilibrium transformation (see panel c for its definition), Pc1 = 13.5 GPa and Pc2 = 15.6 GPa mark the
critical pressures for the mechanical transformation. (c) Enthalpy during AQC simulations of compression and subsequent decompression of
an ensemble of glasses prepared with a quench rate of Ṫ = 1013 K/s. The vertical arrow Peq ≈ 6.7 GPa marks the intersection of the enthalpy
curves during compression and decompression.

perfect and defect-free crystal rearrange at once, form-
ing a new stable crystal. Plasticity during shear loading
of amorphous structures is associated with similar, yet lo-
calized mechanical instabilities [35–40]. The rearranging
regions are called shear-transformation zones and their oc-
currence can be predicted through the identification of “soft
spots” [39–42]. In aSi, these soft spots are local regions of
HDA character [43,44]. This raises the question of whether
plasticity in amorphous solids and the polyamorphic tran-
sition have different microscopic signatures or, conversely,
whether this transition is nothing more than some sort of yield
point.

In the theory of equilibrium phase transitions, the distinc-
tion between first and second order is made on the behavior
of susceptibilities across the transition point [4,45]. A partial
answer to the question on the nature of the polyamorphic
transition may therefore rest in how the (linear) mechanical
response of aSi behaves across the transition. We here use
atomic-scale computer simulations of periodic representative
amorphous volume elements to study the macroscopic (elas-
tic) and microscopic (shear transformation) response of aSi
across the polyamorphic transition. To drive the transition, we
compress (and decompress) these volume elements affinely in
small increments, and we search for the next local minimum
after the deformation step. We call this procedure athermal
quasistatic compression (AQC), in analogy to the athermal
quasistatic shear procedure used in the amorphous plasticity
literature [46,47]. It mimics experiments where pressure is
induced either through a pressure medium in a loading cell
or by contacting with an indenter [11,15,16,20,29,30].

Our results indicate that the collapse of the aSi structure
has signatures similar to the yield point during shear loading.
The transition can be viewed as a sequential series of spatially
localized compression transformation zones or plastic events.
To emphasize the mechanical character of the transition, we
also probe the properties of a form of aSi that is compressed

in the liquid phase and then quenched at constant pressure to
become amorphous. The resulting amorphous samples show
a gradual, rather than a discontinuous, variation of thermody-
namic properties (density, elastic constants) as a function of
pressure.

II. METHODS

We employ molecular dynamics and molecular statics sim-
ulations to investigate the behavior of aSi under hydrostatic
compression. We first melt a Si-I (diamond cubic) crystal with
N = 4096 atoms in the isothermal-isobaric (NPT) ensemble
at T = 3000 K and zero hydrostatic pressure. The liquid
is cooled down to T = 2000 K at a constant rate of Ṫ =
1013 K/s and equilibrated for a further 20 ps.

Our final aSi configurations are prepared from this sili-
con melt in three distinct ways. First, we produce periodic
representative volume elements of aSi at zero hydrostatic
pressure. We draw new random velocities from a Gaussian
distribution at T = 2000 K and equilibrate the structures for
30 ps. This equilibration time is sufficient for the atoms to lose
the memory of their initial state, i.e., for the mean-squared
displacement to be in the diffusive regime. After equilibration,
we quench the liquid samples from T = 2000 K to T = 1 K at
quench rates of Ṫ = 1013 K/s and Ṫ = 1011 K/s. To drive the
polyamorphic transition, the final glass is then compressed hy-
drostatically by affinely remapping all atomic positions with
a prescribed density increment �ρ [46,47]. We optimize the
glass structure after each increment, a procedure we refer to
as AQC in the following.

Second, we reheat the final aSi structure from T = 1 K
to a finite temperature of T � 700 K which is smaller
than the glass transition temperature TG ≈ 1100 K. The
glasses are equilibrated for 200 ps at temperature T and
vanishing hydrostatic pressure P. After equilibration, these
configurations are compressed hydrostatically at constant
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temperature and compression rates of Ṗ = 10−4 GPa/ps and
Ṗ = 10−5 GPa/ps.

Third, we equilibrate the liquid silicon at T = 2000 K
and a set of constant hydrostatic pressures of P �= 0 GPa.
The liquid is quenched to T = 1 K using quench rates of
Ṫ = 1013 K/s and Ṫ = 1011 K/s while maintaining constant
hydrostatic pressure. We generate ensembles of 500 inde-
pendent configurations for the glasses quenched at vanishing
pressure and the subsequent AQC. Compression at finite tem-
perature is performed for a subset of 10 configurations. For the
glasses prepared at nonzero hydrostatic pressure, we generate
100 configurations for Ṫ = 1013 K/s and 25 configurations
for Ṫ = 1011 K/s at each pressure.

In all simulations, we used the interatomic potential by
Kumagai et al. [48]. Previous publications showed that this
interatomic potential correctly reproduces the polyamorphic
transition in aSi [18] and delivers results on shear-induced
silicon amorphization that are comparable to those obtained
with more complex machine-learning potentials [49–51].
All dynamic simulations employed a timestep �t = 1 fs,
a Nose-Hoover chain thermostat, and a Parrinello-Rahman
barostat [52–54]. The relaxation constant of the thermostat
and the barostat were chosen as 1 and 10 ps, respectively.
Energy minimization in static simulations was performed us-
ing a conjugate-gradient minimizer with a force tolerance of
10−6 eV/Å.

III. RESULTS

A. Phenomenology

We begin by investigating how amorphous silicon prepared
at zero pressure behaves under hydrostatic compression. As
shown in Fig. 1(b), the density initially increases linearly with
pressure. The material densifies at constant critical pressure
Pc, which manifests as an abrupt increase in the density-
pressure diagram. This sudden compression is the signature of
the pressure-driven transformation from an LDA to an HDA
structure in aSi. The critical pressures for this transition are
at Pc1 ≈ 13.5 GPa and Pc2 ≈ 15.6 GPa for glasses prepared
with quench rates of 1013 and 1011 K/s, respectively. As the
system is further compressed, the mean density of glasses pre-
pared with different quench rates converges to the same value.
The glasses prepared at a constant nonzero pressure show a
smooth dependence on the hydrostatic pressure and therefore
a continuous transition between the two phases. These results
are consistent with prior work [18,19].

Additional insight can be obtained by comparing the en-
thalpy H of the two phases [3,12,55], H = U + PV , where U
is the potential energy, P is the pressure, and V is the volume.
In Fig. 1(c), we show the enthalpy during compression and
subsequent decompression. The two curves intersect at Peq ≈
6.7 GPa, which is the pressure at which a quasiequilibrium
phase transformation could occur. Here quasiequilibrium has
to be interpreted as a transition between two metastable basins
in the potential energy landscape; i.e., at finite temperature we
would need to restrict phase-space integrals to the respective
basin to avoid jumps between them. We observe that glasses
prepared at constant pressure follow the amorphous structure
with the lowest enthalpy. We conclude that below 6.7 GPa the

FIG. 2. [(a), (b)] Probability fc of finding an atom with coordi-
nation c as a function of hydrostatic pressure for glasses prepared
at zero pressure (a) and at constant nonzero pressure (b) from en-
sembles of simulation runs. Colored lines mark samples prepared
initially with a quench rate of Ṫ = 1013 K/s. The black dashed line
shows f4 and the black solid line shows f5 for glasses prepared with
a quench rate of Ṫ = 1011 K/s. We only show f4 and f5 for the
latter since atoms with higher coordination behave similarly for com-
pression larger than the critical pressure. The spatial cutoff for the
computation of the coordination number is chosen as rc = 2.925 Å
as obtained from the first local minimum in the radial distribution
function at zero pressure. The vertical arrows indicate Peq, Pc1, and
Pc2 as in Fig. 1. [(c), (d)] Visualization of the coordination number c
for an exemplary atomic configuration quenched with Ṫ = 1013 K/s
in the LDA structure (c) and in the HDA structure (d). Color coding
is the same as that in panels (a) and (b).

LDA structure is thermodynamically preferred, while above
6.7 GPa the HDA structure is more favorable. The critical
pressures Pc obtained from compression are more than twice
this quasiequilibrium pressure Peq.

We now analyze how the atomic structure changes across
this transition. Figures 2(a) and 2(b) show the probability fc

of finding an atom with coordination c. For glasses prepared
at a quench rate of 1013 K/s we show c ∈ {4, . . . , 9}, while
we only show c ∈ {4, 5} for the slower quench rate of 1011

K/s. During hydrostatic compression, before Pc is reached,
we observe only small changes in the mean coordination∑

c c fc. In this regime, slowly quenched glasses have a larger
fraction f4 of fourfold-coordinated atoms than samples pre-
pared with a fast quench rate. Upon reaching the critical
pressure, f4 drops and an atomic configuration with mainly
fivefold-coordinated atoms (large f5) emerges. These fivefold-
coordinated configurations are transient and vanish rapidly as
atoms with even higher coordination numbers 6, 7, 8, and 9
emerge continuously for increasing hydrostatic pressure. The
snapshots of compressed configurations in Figs. 2(c) (LDA)
and 2(d) (HDA) also clearly show this increase in average
coordination across the LDA-HDA transition. Note that some
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FIG. 3. (a) Ensemble-averaged density 〈ρ〉 of aSi as a function of
hydrostatic pressure 〈P〉 at finite temperature and compression rate.
(b) Probability fc for one atom with coordination c as a function
of hydrostatic pressure. The black arrows indicate approximately
the critical pressure for the transformation from LDA to HDA for
configurations compressed with Ṗ = 10−5 GPa/ps at T = 500 K.

authors denote structures with high-coordination numbers as
VHDA [12,14,19,56], but given the gradual transition towards
highly coordinated structures we refer to the high-pressure
structures as HDA. For glasses quenched at a constant pres-
sure, the coordination number changes continuously with
hydrostatic pressure. Thereby, low-coordinated atoms are con-
tinuously replaced by atoms with higher coordination as the
pressure increases. At the pressure Peq = 6.7 GPa, the con-
figurations consist mainly of five- and sixfold-coordinated
atoms.

So far we have considered mechanical compression in
the athermal limit, i.e., at vanishing temperature [46,47]. In
Fig. 3(a), we show the mean density of aSi during hydrostatic
compression at finite temperature. For each investigated tem-
perature and compression rate we observe a critical pressure
Pc at which the density increases abruptly, indicating an LDA-
HDA transformation. This critical pressure decreases with
increasing temperature T and decreasing compression rate Ṗ.
Compared to the athermal limit, the minimal critical pressure
for the highest temperature T = 700 K and the slowest com-
pression rate Ṗ = 10−5 GPa/ps is reduced to ≈39%.

Similar to Figs. 2(a) and 2(b), we show in Fig. 3(b)
the pressure-dependent coordination for one exemplary tem-
perature and compression rate. The initial coordination
changes drastically at the critical pressure. In contrast to
the athermal simulations, the transition is smooth and we
observe more changes in coordination at pressures below

the zero-temperature critical pressure; however, the over-
all phenomenology is identical. Since the signature of the
polyamorphous transformation is best observed at zero tem-
perature, we only consider the athermal simulations for the
rest of the paper.

B. Elastic properties

The abrupt change in coordination during athermal com-
pression, as opposed to a continuous pressure dependency,
is reminiscent of a first-order phase transition. To further
substantiate this analogy, we investigate the relevant suscep-
tibilities, i.e., the elastic constants, across the polyamorphic
transition. It is well known that in crystalline materials a
mechanically driven transition occurs when an eigenvalue of
the elastic tensor Cαβμν disappears [32,57,58]. In the limit of
zero temperature and finite stress, the tensor of elastic moduli
Cαβμν (also known as the Birch coefficients [33,34,59,60]) is
composed of three contributions: the affine or Born moduli
CB

αβμν , the nonaffine moduli CNA
αβμν , and a stress-dependent

contribution CS
αβμν . The full elastic tensor is computed

as [34,61–63]

Cαβμν = CB
αβμν + CNA

αβμν + CS
αβμν, (1)

with

CB
αβμν = 1

V

∂2U (ri j )

∂ηαβ∂ημν

, (2)

CNA
αβμν = − 1

V

∂2U (ri j )

∂rlγ ∂ηαβ

(
H−1

)
lγ ,mκ

∂2U (ri j )

∂rmκ∂ημν

, (3)

CS
αβμν = 1

2 (σαμδβν + σανδβμ + σβμδαν

+ σβνδαμ − 2σαβδμν ), (4)

where U (ri j ) is the energy function, V is the current volume
of the simulation cell, riγ is the position of atom i in direction
γ , ηαβ is the Green-Lagrange strain tensor, σαβ is the Cauchy
stress, δαβ is the Kronecker delta and H = ∂2U (ri j )/∂rlφ∂rmψ

is the Hessian matrix. More details on this decomposition
at finite stress and its analytical computation for many-body
potentials can be found in Ref. [34].

Since amorphous solids show isotropic material behav-
ior for sufficiently large system sizes and we consider a
hydrostatic stress, the elastic tensor Cαβμν reduces to two
independent elastic constants [61,64–66]. We report the
ensemble-averaged bulk modulus K and shear modulus μ,
since they are the eigenvalues of the elastic tensor. They
determine the limit of elastic stability that is reached when
either modulus vanishes [31,32]. Only the shear modulus can
vanish under hydrostatic compression.

Figure 4 shows the bulk modulus K and the shear modu-
lus μ for the full range of pressures. The bulk modulus of
the glasses increases under compression for the full pressure
range, independent of preparation. For aSi prepared at vanish-
ing pressure, the bulk modulus initially increases linearly up
to P ≈ 8 GPa and starts to become independent of pressure
up to Pc. During the transformation (at Pc), the bulk modulus
increases discontinuously and subsequently approaches again
a linear pressure dependency for higher compression. For
glasses prepared at constant, nonzero pressure we observe a
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FIG. 4. Pressure-dependent ensemble-averaged (a) bulk modulus
〈K〉 and (b) shear modulus 〈μ〉 (c) Exemplary nonaffine displacement
field resulting from one elastic instability. Note that the displacement
vectors are scaled with a constant value x for better visibility and
the red circle is a guide to the eye and marks the location of largest
displacement. (d) Pressure-dependent shear modulus μ of the black
dashed box in panel (b) for one single configuration prepared using
Ṫ = 1011 K/s. The pink dashed arrows indicate the jumps in pressure
and shear modulus during each instability.

continuous, but sublinear, increase of the bulk modulus with
increasing pressure. The pressure dependency of the bulk
modulus resembles the pressure dependency of the density
in Fig. 1(b). The difference between the quenched and AQC
glasses is purely due to their difference in density. The bulk
modulus data collapse when plotted versus density rather than
pressure.

The shear modulus μ shows more interesting features.
During AQC, the shear modulus μ decreases to a value of
about 24 GPa at the critical pressure. Once Pc is reached,
the modulus jumps to a value of roughly 32 GPa, almost
identical to the modulus for the stress-free quenched structure.
While the initial quench rate leads to a different modulus at
P < Pc, the systems appear to lose memory of the initial state
beyond the polyamorphic transformation. At even larger com-
pression, the shear modulus starts to soften again. The shear
modulus is independent of the preparation protocol above the
critical pressure of the polyamorphic transition.

For glasses quenched at constant pressure, the shear modu-
lus also has a nonmonotonic functional dependency on P. The
maximum shear modulus is at P ≈ 6.8 GPa, which coincides
with the critical pressure Peq of the quasiequilibrium transfor-
mation. As the pressure increases above Peq and Pc, the shear
modulus decreases and plateaus at P � 20 GPa.

In Fig. 5 we show the individual contributions from Eq. (1)
to the bulk modulus and the shear modulus. For AQC aSi,
the pressure dependency of the Born contribution to the bulk
modulus is qualitatively similar to what is observed for the

FIG. 5. Born CB, stress CS, and nonaffine CNA contributions of
the bulk modulus 〈K〉 [panels (a)–(c)] and the shear modulus 〈μ〉
[panels (d)–(f)].

full bulk modulus in Fig. 4(a). While the Born contribution
hardens the elastic response, the nonaffine contribution soft-
ens it. With increasing compression, the magnitude of the
nonaffine contribution increases initially and reaches a local
maximum at the critical pressure. At the critical pressure, the
ratio between the Born and the nonaffine contribution has a
local minimum of CB/|CNA| ≈ 4. This minimum explains the
flattening of the bulk modulus observed in Fig. 4(a). Above
the transformation, the nonaffine contribution decreases its
magnitude with pressure. The aSi samples prepared at a con-
stant pressure show a pressure dependency similar to the
AQC glasses for both the Born and the nonaffine contribu-
tion. However, their pressure dependency is continuous and
no abrupt change of either property is observed. As expected
from Eq. (4), the stress contribution increases linearly and is
independent of the preparation protocol. The stress contribu-
tion additionally stiffens the material, but its absolute value is
small compared to the Born contribution.

The Born contribution to the shear modulus increases
linearly under hydrostatic compression for the aSi samples
prepared at vanishing pressure. The behavior of the non-
affine contribution is the reverse of the Born contribution;
i.e., the magnitude of the nonaffine contribution decreases
linearly. At the critical pressure for the transformation, the two
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contributions have a local maximum, or respectively min-
imum, with a ratio of CB/|CNA| ≈ 1.4: The nonaffine
contribution almost compensates the Born term. At the trans-
formation, the pressure dependency changes abruptly. For
larger compression, the affine contribution decreases and the
nonaffine contribution increases. The stress-dependent part of
the shear modulus softens the elastic response in addition
to the nonaffine contribution. This ultimately explains the
observed softening of the shear modulus in Fig. 4 before the
transformation. Samples prepared at constant pressure follow
again the trends of the hydrostatically compressed glasses but
without the abrupt change in behavior.

C. Elastic instabilities and soft spots

Although the (ensemble-averaged) shear modulus softens
under compression, its value at the critical pressure for the
phase transformation is still finite. The material does not
appear to exhibit an elastic instability. While the ensemble-
averaged data do not show an instability, the individual
calculations undergo a continuous series of elastic instabili-
ties, i.e., a divergence of the shear modulus in the pressure
range of the polyamorphous transition. Figure 4(c) shows
the nonaffine displacement field resulting from one of these
elastic instabilities. This nonaffine displacement field reveals a
random displacement of all atoms, but localized on one cluster
of atoms. Figure 4(d) shows the drops in the shear modulus
resulting from a sequence of such events. Comparing the shear
modulus before and after an instability, we observe that the
absolute value barely changes for pressures P < Pc. At the
critical pressure Pc for the transformation (which is slightly
configuration dependent), the number of elastic instabilities
per pressure range increases. Interestingly, each instability
near Pc leads to a noticeable stiffening of the shear modulus.

We investigate the origin of this sudden change by look-
ing at the microscopic signature of these individual plastic
events, which are reminiscent of shear transformation zones
(STZs) but occur under compression rather than shear. Many
methods exist to predict and identify soft spots in amorphous
solids [40]. In this work we use the method developed by
Richard et al. [67], which relies on the pseudoharmonic modes
(PHMs). We choose PHMs because they predict the displace-
ment field of a soft spot well before the instability [67]. We
compute the lowest PHM for a subset of 50 configurations as a
function of hydrostatic pressure and report their approximate
size using the participation ratio. The participation ratio e is
defined as

Ne =
[∑

i

( �πi · �πi )
2

]−1

, (5)

where π (which is a 3N-dimensional vector) is the displace-
ment field of the PHM and N is the number of atoms in the
solid. The participation ratio e is a measure of spatial localiza-
tion and Ne is the approximate number of atoms participating
in the plastic event. For the special case where only one atom
is involved in a plastic event, it yields Ne = 1. In contrast, if
all atoms are involved and they contribute equally, Ne = N .

Figures 6(a) and 6(b) show the product Ne of the PHM
as a function of hydrostatic pressure. The mean size of the

FIG. 6. [(a), (b)] Pressure dependence of the number of atoms
contributing in one pseudoharmonic mode (PHM). The black ver-
tical arrows mark the critical pressures Pc from Fig. 1(b). [(c),
(d)] Displacement fields �πi for PHMs for one sample prepared at
Ṫ = 1013 K/s.

PHMs increases slightly with compression before the phase
transformation. Independent of quench rate, the mean size of
the PHMs in this regime involves approximately 10–20 atoms.
At the transformation pressure, the mean size of the soft spots
starts to increase up to ≈30 atoms. For larger compression,
the number of atoms involved in a plastic event increases up to
approximately 50 atoms. The displacement field π for one of
the modes in the low- and high-pressure regimes is shown in
Figs. 6(c) and 6(d). It is clearly visible that the size of the soft
spots increases with compression and that the displacement
field has an Eshelby-like character [40,68,69].

IV. DISCUSSION

First, we note that equilibrium arguments appear to be
incapable of capturing the polyamorphic transformation in
aSi. In particular, the polyamorphic transformation does not
occur near the “equilibrium” pressure Peq. This transition is
between different polymorphs of the aSi phase, which are not
equilibrium configurations. Therefore, care has to be taken
when interpreting this quasiequilibrium transformation.

Peq does capture aspects of the transition from low- to
high-density structures when compressing the melt before
quenching—in particular, the maximum in shear modulus
[Fig. 4(b)]. This indicates a large kinetic barrier resisting
the structural transition. The origin of this kinetic barrier
is a low atomic mobility below T G, which constrains the
LDA structure to a region of metastability in the phase
space. Poole et al. [70] employed a thermodynamic de-
scription and associated the actual critical pressure for the
transformation with the limit of metastability, i.e., with a
spinodal. Thereby, the spinodal marks the limit where any
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thermodynamic barrier vanishes. However, an amorphous
solid should be described by a multitude of spinodal lines or
points, rather than a single one, owing to the random distribu-
tion of properties [71–73].

We observe that the density ρ of the configurations
quenched at nonzero pressure is higher than the AQC com-
pressed samples, but both yield a similar mean enthalpy H .
This observation can be explained via the “two-state model”
of Rapoport [8,10,24]. This model assumes that the liquid
exists in two different states that in the case of aSi correspond
to the Si-I (diamond cubic) and Si-II (β-tin) crystal phases.
Because of the high mobility of the atoms in the liquid,
the different states can be continuously created and annihi-
lated, whereby their fraction can increase continuously under
compression. Therefore, glasses equilibrated in the liquid at
nonzero pressure can adjust their coordination which is frozen
after quenching. The difference in density between the two
ways of preparation is balanced by their energy difference.
This is direct evidence that multiple polyamorphs exist in our
simulations.

Our observations on the polyamorphic transition have
similarities to shear yielding of glasses. Shear yielding of
aSi has been reported in the literature, with the following
phenomenology: aSi initially deforms elastically but flows
after the yield point [44,69,74–76]; approaching the yield
point, a large percentage of atoms become fivefold coordi-
nated [44,74,75]; the shear modulus changes abruptly at the
yield point [69]. We observed the same phenomena for the
polyamorphic transition, with the difference that atoms with
coordination larger than 5 appear during compression.

The microscopic picture of the polyamorphic transforma-
tion found here is also identical to yielding under shear in
glasses. Hydrostatic compression of aSi results in a series of
instabilities, which can be identified by a loss of mechan-
ical stability that manifests as a vanishing shear modulus.
Each instability triggers a soft spot in the material: The dis-
placement field during these instabilities shows signatures
identical to STZs [37,40,64], the carrier of plastic deforma-
tion in disordered materials under shear. These signatures
include a localization of the nonaffine displacement field [41]
as well as a quadrupolar strain-field surrounding the localized
event, as described by Eshelby inclusion theory [68]. The fast-
quenched configurations initially have a fraction of fivefold-
and higher-coordinated atoms larger than that of the configu-
rations obtained at lower quench rates. These are “liquidlike”,
i.e., less resistant to deformation and acting as soft spots in
aSi [43,44]. This lower resistance to deformation reduces the
critical pressure.

The macroscopic shear modulus, computed here as en-
semble averages over 500 configurations, does not vanish.
However, it monotonously decreases with pressure below Pc

of the polyamorphic transformation and jumps to a larger
value as the transition is crossed. This is accompanied by
an instantaneous change in density, marked by an increase
in average coordination. The decrease in shear modulus is
driven by the nonaffine contribution to the elastic modulus
[Fig. 5(e)]. In terms of the microscopic picture painted in the
previous paragraph, the nonaffine origin of the decrease in
shear modulus can be interpreted as a signature of localized
softening of the material.

FIG. 7. (a) Hydrostatic pressure as a function of volumetric strain
ε. The volumetric strain is computed as ε = ρ/ρ0 − 1, where ρ0 is
the initial density. (b) Shear stress as a function of shear strain.

To further emphasize the similarities to yielding, we plot
in Fig. 7(a) the pressure as a function of volumetric strain
in a traditional stress-strain diagram. The behavior is qualita-
tively identical to stress-strain diagrams obtained from shear
yielding glasses [43,44,47,74,75,77], with pressure taking the
role of shear stress. For visual comparison, we also computed
the shear response of our aSi samples and show in Fig. 7(b)
the ensemble-averaged shear stress σxy as a function of the
shear strain εxy. The material exhibits a linear “elastic” re-
sponse at small strain ε followed by flow at constant pressure
beyond a yield point at ε � 0.1 and both compression and
shear. In particular, the glass prepared at a lower quench rate
shows a stress overshoot, explaining the re-entrant section of
the density-pressure diagram [Fig. 1(b)] as a compression-
softening phenomenon of a well-aged glass [44,77,78].

V. CONCLUSIONS

In summary, we performed extensive simulations of the
behavior of aSi during hydrostatic compression. Our simula-
tions show a polyamorphic transformation from a low-density
to a high-density phase during quasistatic compression of
aSi quenched at zero pressure, but a gradual transition for
near-equilibrium structures obtained when quenching liquid
silicon at a finite pressure. Microscopic and macroscopic
analyses of the transition revealed similarities to the yield
transition of glasses under shear: localized carriers of plastic
events (shear transformation zones), change of local atomic
order, and change in elastic properties. We conclude that
the polyamorphic transition is essentially a yield transition.
Whether yield of glasses itself is a phase transition is an open
discussion in the scientific literature [77,79–82].
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