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Although continuum theories have been proven quite robust to describe confined fluid
flow at molecular length scales, molecular dynamics (MD) simulations reveal mechanistic
insights into the interfacial dissipation processes. Most MD simulations of confined fluids
have used setups in which the lateral box size is not much larger than the gap height,
thus breaking thin-film assumptions usually employed in continuum simulations. Here we
explicitly probe the long-wavelength hydrodynamic correlations in confined simple fluids
with MD and compare to gap-averaged continuum theories as typically applied in, e.g., lu-
brication. Relaxation times obtained from equilibrium fluctuations interpolate between the
theoretical limits from bulk hydrodynamics and continuum formulations with increasing
wavelength. We show how to exploit this characteristic transition to measure viscosity
and slip length in confined systems simultaneously from equilibrium MD simulations.
Moreover, the gap-averaged theory describes a geometry-induced dispersion relation that
leads to overdamped sound relaxation at large wavelengths, which is confirmed by our
MD simulations. Our results add to the understanding of transport processes under strong
confinement and might be of technological relevance for the design of nanofluidic devices.
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I. INTRODUCTION

The field of nanofluidics has emerged from microfluidics within the last 20 years due to progress
in nanofabrication, characterization, and simulation tools [1–3]. Recent advances in the fabrication
of devices with subnanometer confinement [4–6] require theories that consider the discrete nature
of molecules, and even interactions between fluid molecules and the electronic structure of the
confining walls may become relevant [7,8]. The lower length scale limit of continuum theories can
be approximated to be 1 nm, but many phenomena occur on length scales well above this limit [3]. In
a recent review, Faucher et al. [9] identified “critical knowledge gaps” in nanoscale mass transport,
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including remaining discrepancies between simulation and experiments in slip flow. Closing these
gaps would help to leverage the surprising effects in engineering devices, such as membranes for
water desalination.

The transition from continuum to molecular descriptions of confined fluids is closely related to
fluid structuring. Molecular arrangement into distinct layers occurs due to geometric confinement
and is strongly influenced by the interaction between the fluid and wall atoms [10–12]. Molecular
dynamics (MD) simulations have been widely employed to study the effect of fluid structure on
transport properties [13–17] and the fluid–wall boundary condition [18–20]. While MD simulations
are a valuable tool to study confined systems, Travis et al. [21] showed that classical contin-
uum theories remain valid down to about five molecular diameters in simple fluids. Therefore,
dimensionality-reduced continuum formulations are often employed on these scales and combined
with MD parametrizations, e.g., for wall slip [22]. In this work we compare the hydrodynamic
correlations of confined fluids with such a dimensionality reduced, i.e., gap-averaged, continuum
description.

In many continuum simulations of dense confined fluids, compressibility effects are neglected,
which appears reasonable at first glance. Sound speeds in liquids are on the order of 103 m/s and thus
play a minor role in momentum transport at hydrodynamic length and time scales [23]. However, in
the presence of walls, friction strongly influences the dynamics of sound waves, as was first pointed
out by Ramaswamy and Mazenko [24] in a phenomenological approach for adsorbed layers on
substrates. In their work an unspecified friction term was used to interpolate between compressible
hydrodynamics and Fickian diffusion. The effect of overdamped sound was later related to the
(negative) algebraic long-time tail of the velocity autocorrelation function of a suspended particle in
a confined system observed in lattice Boltzmann simulations [25,26]. Although the diffusive sound
modes govern the velocity of the suspended particle at long times, they do not contribute to the
diffusion coefficient. A rigorous mathematical treatment of the problem was subsequently given in
a series of works by Felderhof for a single plane wall [27], two parallel plane walls [28], and circular
geometries [29].

It is common practice to extract transport coefficients from the correlations of equilibrium
fluctuations, e.g., through the Green-Kubo approach [30,31], or by means of a direct fit to the
autocorrelation functions of hydrodynamic variables [32,33]. Here we briefly recap bulk hydro-
dynamic theory in order to motivate a similar approach for confined fluids; see Refs. [34,35] for
more details. We start from the Navier-Stokes equations that describe mass, momentum, and energy
balance in terms of the density ρ(�r), momentum �j(�r) and energy e(�r) fields. Here and in the
following, �r = (x, y, z) denotes a spatial coordinate. Given the trajectory {�ri(t ), �vi(t )} of N particles,
we compute the mass density field as

ρ(�r, t ) = m
N∑

i=1

δ[�r − �ri(t )], (1)

and the corresponding Fourier transform is given by

ρ̃(�k, t ) = 1

V

∫
V

d�rρ(�r, t ) exp(−i�k · �r)

= m

V

N∑
i=1

exp[−i�k · �ri(t )]. (2)

Similarly, we obtain for the Fourier coefficients of the momentum density

�̃j(�k, t ) = m

V

N∑
i=1

�vi(t ) exp[−i�k · �ri(t )]. (3)
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For small deviations from equilibrium δρ(�k, t ) = ρ(�k, t ) − 〈ρ(�k, t )〉, the linearized hydrodynamic
equations can be solved. For the sake of brevity, we omit the δ notation from now on. The time
evolution is typically solved through a Laplace transform, and one finds that the longitudinal and
transverse momentum modes decouple. The normalized time autocorrelation function of the Fourier
coefficients of transverse momentum decays exponentially,

C⊥(k, t ) ≡ 〈 j∗⊥(k, 0) j⊥(k, t )〉
〈 j∗⊥(k, 0) j⊥(k, 0)〉 = exp(−νk2t ), (4)

where �j⊥ = �j − j‖ �̂k and j‖ = �j · �̂k with �̂k = �k/|�k| are the momentum fluxes perpendicular and
parallel to the wave vector �k, respectively. The angular brackets denote an average over initial
conditions, and the star is the complex conjugate. The decay rate is proportional to the kinematic
viscosity ν = η/ρ, where η is the conventional shear viscosity. The kinematic viscosity has units of
a diffusion constant and can be regarded as such for the diffusion of momentum.

For the inverse Laplace transform of the longitudinal modes, one usually uses a second-order ap-
proximation in k = |�k| (instead of finding the exact roots of a cubic equation) [36]. The normalized
longitudinal momentum autocorrelation function has propagating sound modes, and the decay rate
is determined by viscous and conductive effects

C‖(k, t ) ≡ 〈 j∗‖ (k, 0) j‖(k, t )〉
〈 j∗‖ (k, 0) j‖(k, 0)〉 = exp(−�k2t ) cos(cskt ), (5)

with sound attenuation coefficient � = (γ − 1)DT/2 + νL/2 and adiabatic speed of sound cs. Here
γ = cP/cV denotes the ratio of volume-specific isobaric and isochoric heat capacities, DT = κT/cP

is the thermal diffusivity with thermal conductivity κT, and νL = (4η/3 + ζ )/ρ is the kinematic
longitudinal viscosity with bulk viscosity ζ . Finally, the normalized density autocorrelation function
is given by

Cρ (k, t ) ≡ 〈ρ∗(k, 0)ρ(k, t )〉
〈ρ∗(k, 0)ρ(k, 0)〉

=γ − 1

γ
exp(−DTk2t ) + 1

γ
exp(−�k2t ) cos(cskt ), (6)

where the first and second terms describe the Rayleigh and the Brillouin process, respectively.
Equation (6) has probably received most attention, since its power spectrum—the dynamic structure
factor S(k, ω)—is experimentally accessible, for instance, through light scattering [37]. The set of
correlation functions fully describes the dynamics of statistically independent fluctuating quantities.
The fluctuations of density are assumed to occur on timescales that do not allow the exchange of
heat. Hence, the adiabatic compressibility governs the velocity of sound (DTk 	 cs) [34].

In this paper we investigate the time correlations of confined systems. Gutkowicz-Krusin and
Procaccia [38,39] have derived the dynamic structure factor for confined fluids, considering both
momentum and energy transport at the fluid-wall interface. However, their approach considers
only no-slip or perfect slip boundary conditions. Bocquet and Barrat [40,41] derived momentum
time correlation functions for confined systems and related these to the hydrodynamic boundary
conditions with partial slip. Yet they considered only transverse fluxes perpendicular to the walls,
averaged over the lateral dimensions of the system. The effect of the lateral periodic box size in
MD simulations of confined systems, i.e., the admissible wavelengths of longitudinal and in-plane
transverse modes, has received little attention so far [42].

Here we provide a derivation of time correlation functions for height-averaged balance
equations—similar to the continuum methods commonly applied in lubrication [43]—under isother-
mal conditions. Thus, we consider only momentum transport at the interface with partial-slip
boundary conditions, which allows us to extract effective transport coefficients as well as the slip
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length from equilibrium MD simulations. Under nanometric confinement, we are able to probe the
transition to overdamped sound modes at long wavelengths.

II. THEORY

A. Dimensionality reduction

Continuum formulations of thin-film flows typically employ an average over the gap height to
reduce the dimensionality of the problem. We have shown in a previous work [44], how this can be
formally achieved without making a priori assumptions about the constitutive behavior, which we
briefly recap here. We average the hydrodynamic balance laws over the gap height

1

h

∫ h2(x,y,t )

h1(x,y,t )

∂q
∂t

dz = −1

h

∫ h2(x,y,t )

h1(x,y,t )

(
∂fx

∂x
+ ∂fy

∂y
+ ∂fz

∂z

)
dz, (7)

where q ≡ q(�r, t ) denotes the vector of conserved densities, and fi ≡ fi(�r, t ) are the corresponding
fluxes in Cartesian direction i. Note that here and in the following, bold symbols (e.g., q, f) indicate
vectors of arbitrary length representing a collection of state variables (or derived quantities), while
arrows (e.q. �r, �k) indicate Cartesian 3-vectors. Formally, this integration can be performed for
channels with surfaces moving lateral to each other and having surface topography, such as in
lubrication. Hence, the integration limits h1(x, y, t ) and h2(x, y, t ) depend on the lateral Cartesian
coordinates and on time. We denote the gap height with h ≡ h(x, y, t ) = h2(x, y, t ) − h1(x, y, t ).

For the integral on the l.h.s. of Eq. (7) and the first two terms on the r.h.s. the Leibniz rule
for differentiation under the integral sign applies, and after a few steps [44] one arrives at a
dimensionality reduced form of the balance equations,

∂q̄
∂t

= −∂ f̄x

∂x
− ∂ f̄y

∂y
− s, (8)

where overbars denote height averages φ̄ = 1
h

∫ h2

h1
φ dz, and s acts as a source term. Due to the

structure of Eq. (8), where dominant diffusive fluxes (e.g., shear stresses) are lumped into the source
term, explicit numerical schemes for hyperbolic balance equations with source terms have been
proven successful to solve lubrication problems [44].

In the most general case, the source term contains flux boundary conditions in the averaging
direction, as well as terms which depend on the topography and movement of the upper and lower
wall. Here, considering only flat channels without shearing, the source term simplifies to

s = fz|z=h2 − fz|z=h1

h
. (9)

The source term vanishes when there is no flux across the boundary, i.e., for impenetrable, perfectly
insulating, and slippery walls, where Eq. (8) describes a two-dimensional fluid. For nonzero source
terms, additional dissipation relative to a laboratory system is added. In the following we focus on
systems with impermeable walls under isothermal conditions. In order to solve Eq. (8), we need
explicit expressions of the relevant fluxes as a function of the conserved variables, fi(q) (or their
averaged versions), i.e., constitutive relations.

B. Hydrodynamic correlations in confined systems

In the following we focus on isothermal conditions where the density vector q =
(ρ(�r, t ), �j(�r, t ))
 does not contain the energy density. For bulk fluids, this special case is recovered
by setting γ = 1, which renders adiabatic (cs) and isothermal sound speed (cT) equal. Furthermore,
we neglect nonlinear convective terms, which is justified by the thin-film assumption [45]. The flux
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in Cartesian direction i ∈ [x, y] and the source term are then given by

f̄i =

⎛
⎜⎝ j̄i

δxi p̄ − τ̄xi

δyi p̄ − τ̄yi

⎞
⎟⎠, s = 1

h

⎛
⎜⎝ 0

τxz|z=h2 − τxz|z=h1

τyz|z=h2 − τyz|z=h1

⎞
⎟⎠, (10)

respectively, where δi j is the Kronecker symbol. Here τi j denotes the components of the viscous
stress tensor, which for a Newtonian fluid in three dimensions reads

τ = η( �∇�u + ( �∇�u)
) + (ζ − 2η/3) ( �∇ · �u) 1, (11)

where η and ζ are the coefficients of shear and bulk viscosity, respectively, �u is the velocity field,
and 1 is the 3 × 3 unit matrix. The pressure p is given by a barotropic equation of state (EOS)
p(ρ) = c2

Tρ, which was chosen to retain the linearity of the problem.
In nanoscale geometries, deviations from the no-slip boundary conditions become relevant

[46–48]. Therefore, we consider Navier slip boundary conditions [49] with a uniform slip length
b both at the top and bottom surface. The slip length is the virtual distance from the fluid-wall
interface at which the fluid velocity reaches the wall velocity, if linearly extrapolated. With the
assumption that density does not vary across the gap, we obtain the height-averaged fluxes

f̄x =

⎛
⎜⎝ j̄x

c2
Tρ̄ − νL∂x j̄x

−ν(∂x j̄y + ∂y j̄x )

⎞
⎟⎠, f̄y =

⎛
⎜⎝ j̄y

−ν(∂x j̄y + ∂y j̄x )

c2
Tρ̄ − νL∂y j̄y

⎞
⎟⎠, (12)

and the source term

s = 12ν

h2κ

⎛
⎜⎝ 0

j̄x
j̄y

⎞
⎟⎠. (13)

Here κ renormalizes the actual gap height h for a system with slip to an effective gap height heff =
h
√

κ for an equivalent system without slip. The expression for κ can be obtained by shifting a
parabolic Poiseuille velocity profile u(z) to no-slip boundary conditions while maintaining the same
average flux as in the slip profile,

1

h

∫ h

0
u(z) dz = 1

heff

∫ heff

0
u∗(z) dz, (14)

where u∗(z) denotes the shifted profile. A brief derivation of κ for different slip lengths at the top
and bottom wall is given in Appendix A. In the scope of this work, we deal with only the case of
identical slip length b at both walls, for which we obtain

κ = 1 + 6b/h, (15)

and which is illustrated in Fig. 1.
To arrive at a general solution to Eq. (8), we express the densities of conserved variables as

a series of normal modes q(�r, t ) = q̃(�k, t )ei �k·�r , where �k and �r are two-dimensional vectors in the
plane of the confined region. Note that for convenience we keep the notation introduced above, but
all vector dimensions are reduced by one due to the average. Since all field variables are averaged
over the gap height, we drop overbars from now on for the sake of brevity. We obtain an ordinary
differential equation for the Fourier coefficients

dq̃(k, t )

dt
= H · q̃(k, t ), (16)
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FIG. 1. Wall slip leads to an effective gap height heff = h
√

κ . The parameter κ is found by equating the z
average of the original velocity profile u(z) with that of u∗(z), which is u shifted to yield zero slip.

with the hydrodynamic matrix

H = −

⎡
⎢⎣ 0 ik 0

ic2
Tk νLk2 + 12ν/(h2κ ) 0

0 0 νk2 + 12ν/(h2κ )

⎤
⎥⎦. (17)

The hydrodynamic matrix H is diagonalized with eigenvalues

μ⊥ = −νk2 − 12ν

h2κ
, (18)

corresponding to transverse modes, and

μ‖ = −νL

2
k2 − 6ν

h2κ
± isTk, (19)

corresponding to longitudinal modes. Here the isothermal speed of sound sT(k) =
√

c2
T − (τ‖k)−2

follows a confinement-induced dispersion relation with τ‖ = (Re μ‖)−1, which for small wave
numbers (hk 	 1) reads

sT(k) =
√

c2
T − 36ν2

h4κ2k2
. (20)

Surprisingly, the dispersion takes effect at large wavelengths λ = 2π/k, where the second term in
the discriminant becomes important, and the speed of sound deviates from its bulk counterpart given
by the EOS. As long as sT is a real number, longitudinal modes show underdamped oscillations.
However, there is a transition from underdamped to overdamped behavior at a critical wavelength

λcrit = 2π

kcrit
= πh2κcT/3ν, (21)

where sT becomes imaginary and the eigenvalues for longitudinal modes μ‖ become real. In Fig. 2
we illustrate the wavelength dependence of the effective speed of sound. Note that we plot absolute
values for sT normalized by kτ‖ as a function of the wave number normalized by kcrit . Similar
expressions can be derived for axisymmetric flow through circular channels with radius R, where
the only two eigenvalues are given by

μ1D
‖ = − 4ν

R2κ
± i

√
c2

T − 16ν2

R4κ2k2
k, (22)

with κ = 1 + 4b/R. The definition of derived quantities such as λcrit change accordingly.
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FIG. 2. Dispersion relation for a height-averaged continuum formulation of confined fluids. The solid line
describes the angular frequency using the magnitude of the phase velocity, given by Eq. (20). The dashed
line describes the bulk reference. The wave number is normalized by kcrit = 6ν/h2κcT, and the angular
frequency is normalized by the characteristic relaxation time of longitudinal modes in the underdamped
limit limk→kcrit τ‖ = h2κ/6ν. The critical transition from underdamped to overdamped dynamics occurs with
diverging group velocity.

Consequently, modes with wavelengths larger than the critical wavelength λcrit cannot propagate
through the channel and are dissipated within a finite relaxation time. This is rather counterintu-
itive, since in bulk hydrodynamics wavelength-independent transport coefficients are assumed at
sufficiently long wavelengths.

Assuming arbitrary initial conditions q̃(k, 0) = (ρ̃(k, 0), j̃‖(k, 0), j̃⊥(k, 0))
 (with the limitation
that perturbations out of equilibrium are small in order to preserve linearity), we solve Eq. (16) for
the time evolution of the real part of the conserved variables,

ρ̃(k, t )

ρ̃(k, 0)
= e−t/τ‖

[
cos(sTkt ) + 1

sTkτ‖
sin(sTkt )

]
, (23a)

j̃‖(k, t )

j̃‖(k, 0)
= e−t/τ‖

[
cos(sTkt ) − 1

sTkτ‖
sin(sTkt )

]
, (23b)

j̃⊥(k, t )

j̃⊥(k, 0)
= e−t/τ⊥ , (23c)

with characteristic relaxation times

τ⊥(k) = (νk2 + 12ν/h2κ )−1, (24a)

τ‖(k) = (νLk2/2 + 6ν/h2κ )−1. (24b)

Note that these expressions remain valid when sT becomes purely imaginary and the trigono-
metric functions turn into their hyperbolic counterparts. We give the solution of the imaginary parts
explicitly in Appendix B for completeness.

Figures 3(a) and 3(b) show Eq. (23a) and (23b), respectively, as well as their dependence
on wavelength in the case of underdamped oscillations (λ < λcrit). Since λcrit ∝ cTh2/ν, and
cT/ν ∼ O(1) for most dense fluids, the critical wavelength is on the order of the magnitude of the
squared gap height. In the overdamped case (λ > λcrit), sT is an imaginary number, and therefore
the behavior of density and longitudinal momentum modes changes fundamentally as shown in
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(a)

(b)

(c)

(d)

FIG. 3. Fourier coefficients for density and longitudinal momentum in the underdamped and overdamped
case, respectively.

Figs. 3(c) and 3(d). We observe that density perturbations do not decay, i.e., their relaxation time
diverges. Furthermore, one can show that the decay rate scales with k2, similar to bulk fluids (see
Appendix C). However, in contrast to the bulk, sound relaxation times converge to a finite value,
identical to that of transverse modes.

We want to highlight that the functional form of Eq. (23) is equivalent to the autocorrelation
function of equilibrium fluctuations in the bulk, but with different characteristic timescales, as
described above. In particular, relaxation times of longitudinal and transverse modes become
wavelength-independent in the long wavelength limit, and a diverging group velocity leads to a
transition to overdamped sound relaxation. We explicitly probed this transition using equilibrium
molecular dynamics simulations of confined fluids. Therefore, we write generic correlation func-
tions of the form

C⊥(k, t ) = e− t
τ⊥ , (25a)

C‖(k, t ) = e
− t

τ‖ [cos(ωt ) − β sin(ωt )], (25b)

Cρ (k, t ) = γ − 1

γ
e

t
τT + 1

γ
e
− t

τ‖ [cos(ωt ) + β sin(ωt )], (25c)

where β = 1/ωτ‖, and use frequencies and decay rates as fit parameters to the autocorrelation
functions obtained from MD. Note that for bulk systems, since β ∼ O(k), the sine term is often
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TABLE I. Theoretical expressions for the characteristic timescales for wave propagation and decay in bulk
and confined systems.

1/τT 1/τ⊥ 1/τ‖ ω

Bulk DTk2 νk2 �k2 csk

Bulk (γ = 1) – νk2 νLk2

2 cTk

Confined (γ = 1) – νk2 + 12ν

h2κ

νLk2

2 + 6ν

h2κ
sT(k)k

neglected, but some authors [50–52] explicitly include it. As highlighted in the beginning of this
section, our derivation is for nonfluctuating isothermal conditions with γ = 1. However, the nu-
merical tests with MD naturally contain thermal fluctuations at macroscopic constant temperature,
which is why we included the thermal part in Eq. (25c). An overview of the theoretical expressions
for ω and τ for different systems and conditions is given in Table I.

III. MOLECULAR DYNAMICS SIMULATIONS

In the previous section we derived expressions for the Fourier coefficients of conserved variables
in confined fluids in the hydrodynamic limit. To scrutinize our predictions, we performed a brute
force test of our findings using molecular dynamics (MD) simulations of a simple fluid, confined in
a nanometer-sized channel. All MD simulations were carried out with LAMMPS [53], and we used
a supercritical Lennard-Jones fluid at the state point T = 2.0 ε/kB and ρ = 0.452 σ−3 for all results
shown in this paper. Yet our findings are not limited to the supercritical state, which we showed in a
related work [54]. Hence, the interaction potential [55] between fluid atoms is given by

U (ri j ) = 4ε[(σ/ri j )
12 − (σ/ri j )

6], (26)

where ri j = |�ri − �r j | is the distance between particle i and j. The interatomic potential is shifted
to zero at a cutoff radius of rc = 2.5σ . All simulations were performed with a time step �t =
0.0025

√
mσ 2/ε.

We performed bulk reference simulations in fully periodic boxes, as well as simulations in
confined system, where the periodicity is broken in the direction normal to the walls, which are
modeled as explicit rigid atoms. To probe the long-wavelength limit, we used simulation boxes with
high aspect ratios, i.e., where one box length in the direction parallel to the walls is much larger
than both the gap height and the remaining in-plane dimension. We sampled the trajectories in the
microcanonical ensemble for 2 × 107 time steps after an initial equilibration of the system in the
canonical ensemble, and recorded every 2000th step for postprocessing.

A. Confined setup

For the confined fluid simulations, we model the walls as two rigid atomic layers arranged in
an fcc lattice with lattice constant a = 1.2σf = 1.2σ , which corresponds to a wall density of ρw =
2.31σ−3. The wall density significantly affects fluid-wall commensurability, hence slip [18], and
the chosen parameter lies within the range of similar studies [18,56,57]. The [1 1 2̄] and [1̄ 1 0]
directions are taken in the x and y direction, respectively, such that the closest-packed {111}-surface
is in contact with the fluid. In the x and y direction, we keep periodic boundary conditions, hence
the lateral box sizes are always chosen to be multiples of 3a/

√
2 and a/

√
2, respectively. Fluid-wall

interactions are governed by a Lennard-Jones potential. We use the Lorentz mixing rule for the
length scales σwf = (σw + σf )/2, with σw = 0.75σ . We model different wetting behavior at the
interface by scaling the fluid-wall interaction with respect to the fluid’s interaction energy, i.e.,
εwf = αεf , where the parameter α can be related to the contact angle [58].

014203-9



HOLEY, GUMBSCH, AND PASTEWKA

FIG. 4. Simulation setup for molecular dynamics simulations of confined fluids. One lateral dimension is
much larger than the gap height.

Input parameters for the confined system simulations are gap height, lateral box sizes, and
number density, which defines the number of atoms N in a homogeneous system. Note that the inner
wall layers are placed at a distance h + σ apart to account for a thin depletion zone at the interface.
In the case of pronounced layering effects, fixing the gap height can lead to deviations from the
target density. Yet we stick to this pragmatic approach, which is particularly useful when comparing
atomistic results with continuum predictions. For the gap heights and wetting properties covered
within this study, we did not observe strong deviations from the target density in the center of the
fluid film. To highlight implications of the rigid wall setup with respect to interfacial momentum
and energy transport, we also performed simulations in a system with thermal walls. In this case the
walls consist of nine layers, and we fix only the positions of the outermost atoms. A central region
of the wall which is not in contact with the fluid is thermostatted with a Langevin thermostat with a
relaxation time constant of 40�t . The confined MD setup with rigid walls is illustrated in Fig. 4.

B. Autocorrelation functions from equilibrium fluctuations

For both bulk and confined systems, we compute the autocorrelation functions for the Fourier
coefficients of mass and momentum density. We compute the average in Eqs. (4)–(6) from a single
time series of the dynamical variables, which is equivalent to the convolution of that time series
with itself. We leverage the computational efficiency of the fast Fourier transform (FFT) and use the
Wiener-Khinchin theorem to compute the integral [59]. We chose �k = (kn, 0, 0)
 in the direction
of the longest dimension of our simulation box, where kn is a discrete wave vector corresponding
to waves that fit into this periodic dimension, i.e., kn = 2πn/Lx n = 1, 2, 3, . . .. Hence, momen-
tum autocorrelation functions are calculated for the transverse (�j ⊥ �k) and longitudinal (�j ‖ �k)
directions.

To rule out possible size or shape effects in this setup, we varied the lateral box sizes inde-
pendently and compared transverse momentum autocorrelation functions computed from either of
the lateral velocity components, which led to indistinguishable results. Hence, computing transport
coefficients from correlation functions of collective variables in boxes with high aspect ratio seems
to be no issue, in contrast to, e.g., the calculation of self-diffusion coefficients [60,61].

C. Nonequilibrium simulations of slip

We performed nonequilibrium MD simulations with a similar setup as described in Sec. III A.
Instead of sampling the equilibrium state, we sheared the walls at a constant shear rate to obtain
reference values for the slip length. Therefore, we used smaller box sizes in the shearing direction
(Lx = 29.40σ ) resulting in 2818 fluid atoms. We sheared the upper and lower wall at constant
velocity ±u0/2, respectively, and sampled the Couette profile after an initial startup period until
a total sliding distance of 100Lx is reached.
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Shearing at a fixed gap height with rigid wall atoms may lead to shear localization [62] or
diverging slip lengths [63]. The choice of our simplified setup is mainly to ensure better comparison
with equilibrium simulations, where these effects do not play a role. Here we did not observe such
phenomena at the densities and shear rates considered. Furthermore, the maximum applied shear
rate u0/h in our reference simulations is lower than 0.01

√
ε/mσ 2, where the shear rate dependence

is expected to be low, even for strong fluid wall interaction [64].

D. Green-Kubo simulations

We performed bulk equilibrium simulations in cubic boxes with 1000 atoms to obtain reference
viscosities using the Green-Kubo approach. The GK integrals for the shear and bulk viscosity read

η = V

kBT

∫ ∞

0
〈τi j (t )τi j (0)〉 dt, (27a)

ζ = V

kBT

∫ ∞

0
〈δp(t )δp(0)〉 dt, (27b)

respectively, where τi j are the components of the deviatoric stress tensor and δp(t ) = tr[σ (t )]/3 −
〈p〉 with stress tensor σ (t ) and the equilibrium average of the hydrostatic pressure 〈p〉. The value of
the integrals in Eq. (27a) and (27b) converges after approximately 500�t , for correlation functions
computed from a trajectory with 4 × 105 time steps. The viscosities have been computed from the
integrals of 20 equivalent replica simulations.

IV. RESULTS

A. Autocorrelation functions

We first computed the autocorrelation functions from a bulk reference simulation without walls.
The simulation box had dimensions 941.2 × 14.7 × 14.7 σ 3, which corresponds to 92 001 atoms.
Confined system simulations were performed in a similar box with 90 189 fluid atoms and 43 520
solid atoms in each of the two walls. In this section we show simulation results with a wall-fluid
interaction parameter α = 0.75. Note that typical values for σ are in the range of a few ångströms,
and therefore, our systems have gap heights of a few nanometers. We obtained characteristic times
for the decay and propagation of equilibrium fluctuations by a nonlinear least-square fit to the
generic expressions, Eq. (25), for discrete wave numbers. We used MD data in a time interval
of 250

√
mσ 2/ε for the fit, and for the confined system all wavelengths considered at this point

are in the underdamped regime. In all cases we used rates (e.g., 1/τ⊥) and frequencies (ω) as
fit parameters, but plot the inverse, i.e., the corresponding characteristic times. Accordingly, the
propagated error is δτ ≈ δω/ω2, where δω is the error estimate on the fit parameter ω, given that
relative errors are small.

Transverse momentum correlations are independent of the longitudinal modes, and the kinematic
shear viscosity ν is the corresponding transport coefficient. Figures 5(a)–5(d) show the autocorrela-
tion functions of the real part of jy(k, t ) for four wavelengths (blue solid lines) and the corresponding
fit (black dashed lines), where the shear relaxation time τ⊥ increases with wavelength.

From the transverse momentum autocorrelation functions of the confined fluid in Figs. 5(a)–
5(d) it becomes evident that the wavelength dependence in the decay rate is lost in the range of
the presented wavelengths. This is qualitatively in agreement with the prediction in Eq. (23). The
relaxation times of transverse momentum fluctuations are much shorter than in the bulk.

The autocorrelation functions of longitudinal momentum fluctuations obtained from MD simu-
lations as well as the corresponding fits are shown in Figs. 5(e)–5(h). Different relaxation behavior
between the bulk and the confined systems can be seen in the longitudinal direction as well, with
stronger damping in the system with walls. For the shorter wavelengths, the positions of the local
minima and maxima in the autocorrelation functions coincide with those of the bulk fluid. For
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(a) (e) (i)

(b) (f) (j)

(c) (g) (k)

(d) (h) (l)

FIG. 5. Autocorrelation functions of the real part of density and momentum modes. The first column (a–d)
corresponds to transverse momentum (�j ⊥ �k) with fits to Eq. (25a), the second column (e)–(h) corresponds
to longitudinal momentum (�j ‖ �k) with fits to Eq. (25b), and the third column (i)–(l) corresponds to density
correlations with fits to Eq. (25c). Panels within the same row share the same wavelength. Solid lines show
results from MD calculations, and dashed lines are the corresponding fits. For simulations of the confined
system, all wavelengths shown here are in the underdamped regime (470.6σ < λcrit).

the largest wavelength in Fig. 5(e), we observe that the first minimum is shifted to shorter times
compared to the bulk, indicating a frequency shift with increasing wavelengths.

The density autocorrelation function Eq. (6) contains the previously obtained longitudinal
momentum autocorrelation function weighted by 1/γ . Therefore, to reduce the number of fitting
parameters, we fix the sound attenuation rate and sound frequency, which leaves only the decay rate
of thermally induced density fluctuations 1/DT k2 and the heat capacity ratio γ to be determined.
The results are shown in Figs. 5(i)–5(l), where we make similar observations of faster relaxation
with weaker wavelength dependence as in the bulk fluid.

B. Effective timescales under confinement

The correlations of equilibrium fluctuations in confined fluids clearly deviate from their bulk
counterparts, as shown in the previous section, but Fig. 5 highlighted only four selected wavelengths.
In the following we systematically investigate the transition of characteristic time scales as wave-
length increases. In particular, we test whether the isothermal, height-averaged theory described in
Sec. II A adequately describes the relaxation times and frequencies obtained from MD. Therefore,
we computed all quantities appearing in Eq. (24b), (24b), and (20) in separate nonequilibrium (see
Sec. III C) and equilibrium MD simulations (see Sec. III D), and compare the theoretical predictions
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TABLE II. Material parameters obtained for a supercritical (T = 2.0 ε/kB, ρ = 0.452 σ−3) Lennard-Jones
(LJ) fluid obtained from molecular dynamics (MD) simulations, and from the NIST database for supercritical
argon. Derived quantities such as, e.g., the sound attenuation coefficient � may depend on values from both
sources. All reported parameters are used for the predictions in Figs. 6 and 7.

Name Symbol Value Unit

Shear viscositya η 0.549
√

mε/σ 2

Bulk viscositya ζ 0.351
√

mε/σ 2

Kinematic shear viscositya ν 1.215 σ
√

ε/m
Kinematic longitudinal viscositya νL 2.396 σ

√
ε/m

Thermal diffusivityc DT 0.548 σ
√

ε/m
Sound attenuation coefficienta,c � 1.627 σ

√
ε/m

Heat capacity ratioc γ 2.567 –
Isothermal speed of soundb cT 1.997

√
ε/m

Adiabatic speed of soundb,c cs 3.198
√

ε/m

aFrom MD (GK).
bFrom MD (EOS).
cFrom NIST [65].

with the corresponding fit parameters from the autocorrelation functions. Since thermal effects are
not considered here, but are naturally included in the MD simulations, we obtained additional
parameters (CP, CV, κT) from the NIST thermophysical database for argon [65]. A summary of
material parameters at the supercritical state point is given in Table II.

Figure 6(a) shows the shear attenuation time τ⊥ over the wavelength as obtained from both
bulk and confined MD simulations. The symbols represent an average over the two transverse
directions [ jy(k, t ) and jz(k, t ), real and imaginary parts, respectively] in the bulk, and over the
in-plane transverse direction (from Re[ jy(k, t )] and Im[ jy(k, t )]) in the confined system. We do not
investigate correlations of the jz-Fourier coefficients, since we assumed laminar flow to motivate
the height-averaged balance equations in Sec. II A.

Shear relaxation times in the bulk scale with the square of the wavelength as a consequence of
momentum conservation. The dash-dotted line in Fig. 6(a) illustrates the prediction for the bulk
fluid with kinematic viscosity as the constant of proportionality. As expected, the shear relaxation
time in confined systems deviates from the bulk with increasing wavelength and converges to a
constant value of approximately 30

√
mσ 2/ε for wavelengths larger than 120σ . The prediction for

the confined fluid based on Eq. (24a) is shown as a dashed line and is in excellent agreement with
the MD data.

Similar behavior can be observed for the sound attenuation time τ‖ in Fig. 6(b). Here symbols for
both bulk and confined configuration correspond to an average over the fitted relaxation times from
the real and imaginary part of the longitudinal momentum correlations. The bulk relaxation times
clearly follow a quadratic scaling relation, and the dash-dotted line illustrates the prediction with
shear-attenuation coefficient � given in Table II. For the confined fluid, the transition to wavelength-
independent relaxation times is similar to the in-plane shear relaxation. Here the characteristic time
for the decay of sound modes converges to a value approximately twice as large as the shear
relaxation time in the long-wavelength limit, and to the same quadratic scaling as in the bulk in
the limit of short wavelengths. The prediction based on the isothermal theory [Eq. (24b)] is shown
as a dashed line. In the long wavelength limit, relaxation times from MD and the predictions agree,
but the isothermal theory underestimates sound attenuation at shorter wavelengths. Therefore, we
plot a modified prediction as a dotted line, which replaces the first term of Eq. (24b) with the
nonisothermal sound attenuation from the bulk theory, which describes the MD data slightly better.

For completeness, we show the relaxation behavior associated with the Rayleigh process, i.e.,
thermal relaxation times obtained from the density autocorrelation functions, in Fig. 6(c). The
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(a)

(b)

(c)

FIG. 6. Relaxation times obtained from fits to the autocorrelation functions of momentum and density
fluctuation as a function of the wavelength for bulk and confined systems with α = 0.75. For all three
subfigures, simulation results for the bulk system are shown as blue disks, and results for the confined system
are shown as green diamonds. Error bars signify the error corresponding to two standard deviations of the
fit parameters and are smaller than the symbol size in most cases. Panels (a) and (b) show the theoretical
prediction for bulk and confined systems [τ⊥(k), Eq. (24a), and τ‖(k), Eq. (24b)] as dash-dotted and dashed
lines, respectively. In panel (b) the relaxation times according to the isothermal theory [Eq. (24b)] are modified
for short wavelengths by considering thermal effects, which is illustrated as a dotted line. Panel (c) shows
thermal relaxation times obtained from density autocorrelation functions, which have quadratic wavelength
scaling for both bulk and confined systems, as long as walls are rigid. Open diamonds in panel (c) show results
from simulations with thermal walls, which indicate a similar transition as in (a) and (b).

dash-dotted line describes again the theoretical expectation based on the bulk theory, where the
thermal diffusivity DT is entirely based on data from NIST. Thermal relaxation times from bulk and
confined MD simulations both scale with the square of the wavelength and are indistinguishable
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(a)

(b)

FIG. 7. Effective sound period and velocity of sound as obtained from longitudinal momentum correlations
for bulk and confined systems from simulations with α = 1.5. Error bars signify the error corresponding to two
standard deviations of the fit parameters and are smaller than the symbol size in most cases. In panel (a) we
observe an overall shift to longer sound periods for the confined fluids, which increases with wavelength, and
panel (b) compares the sound velocities directly. For the confined system, the prediction based on the dispersion
relation with sT(k) [Eq. (20)] adequately describes the deviation from the bulk. The critical wavelength marks
the transition from underdamped to overdamped behavior at λcrit = 675 σ.

from one another in the case of rigid walls. We show additional data obtained from simulations in
shorter boxes with vibrating wall atoms with open symbols, which indicates a similar transition to
wavelength-independent relaxation times if energy transport through the walls is allowed.

Oscillatory behavior of density and longitudinal momentum correlation encodes sound propagat-
ing properties of the considered fluid systems. In Fig. 7(a) we plot the sound period T = 2π/ω over
the wavelength for both bulk and confined fluids, obtained from fits to the theoretical expression
for the momentum autocorrelation function. For illustrative purposes, we chose stronger wall-fluid
interactions with α = 1.5, as compared to α = 0.75 in Figs. 5 and 6, since deviation from bulk
behavior becomes more pronounced. As expected, the sound period obtained from the bulk MD
system scales linearly with the wavelength and matches the prediction (dash-dotted line) based on
the adiabatic sound speed from Table II.

For small wavelengths, the sound period in the confined fluid follows approximately the same
linear relation as the bulk, with a slight positive shift to longer periods or lower sound speeds.
With increasing wavelength, deviation from bulk behavior becomes more pronounced. This effect
becomes clearer when we plot the phase velocity directly over the wavelength in Fig. 7(b) and
compare to the dispersion relation (20) derived in Sec. II A. As expected, the phase velocity
is constant for bulk fluids in the considered range of wavelengths. Simulations of the confined
system reveal constant speed of sound only for small wavelengths up to approximately 120σ . For
larger wavelengths, the sound speed decreases, and we found good agreement with the dispersion
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relation (20). Using bulk reference data from Table II and Eq. (21), we predict a critical wavelength
λcrit = 675σ .

C. Critical damping and overdamped regime

As we have described in Sec. II A, the functional form of density and momentum correlations
in confined systems change fundamentally at the critical wavelength, when sT becomes imaginary
and the trigonometric functions turn into their hyperbolic counterparts. In the overdamped regime,
the decay of sound modes is governed by two distinct relaxation times for density and momentum
correlations. Therefore, we seek approximations to Eq. (25b) and (25c), which are more suitable
for fitting to the available MD data at large wavelengths. We show in Appendix C how to arrive at
effective time correlation functions in the overdamped regime and distinguish between τ

j
‖ and τ

ρ

‖
for the relaxation times of longitudinal momentum and density fluctuations, respectively. Thermal
relaxation is slow at large wavelengths, such that we can assume exp(−DTk2t ) ≈ 1 in the considered
time interval. Hence, we fitted the time autocorrelation functions of density and longitudinal
momentum in the overdamped regime to the following expressions:

C‖(k, t ) = exp
( − t/τ j

‖
)
, (28a)

Cρ (k, t ) = γ − 1

γ
+ 1

γ
exp

( − t/τρ

‖
)
. (28b)

The critical wavelength for our confined MD simulation with gap height h = 14.7σ and α = 1.5
is approximately 675σ—more than one half of the full box length (941.2 σ )—such that only
the largest wavelength remains available for analysis of the overdamped relaxation. Therefore,
we further increased the box length to Lx = 1411.8σ , resulting in two more data points in the
overdamped regime. Figure 8 illustrates the split into two distinct relaxation times for density and
longitudinal momentum, which were formerly identical in the underdamped region. The dashed
lines illustrate the theoretical prediction based on the eigenvalues corresponding to longitudinal
and density modes (19). The data points available from our MD simulations converge towards
the theoretical predictions, and the corresponding autocorrelation functions are shown in the
inset.

D. Continuum simulations

To further illustrate the suppression of sound waves in the overdamped regime, we performed
continuum simulations of confined fluids with a finite volume implementation of Eq. (8). The details
of the implementation can be found in Ref. [44]. We studied the dynamics of density perturbations
through explicit time integration in one-dimensional slit channels with length Lx = 1 µm and
varying gap heights between 5 and 50 nm. We employed no-slip conditions at both channel walls
and chose material properties for supercritical argon, similar to our MD simulations. The explicit
time step was �t = 500 fs, and 1024 grid cells discretized the domain. We initialized the system
with an equilibrium density ρ0 and added a Gaussian-shaped density perturbation δρ(x) centered
in the middle of the channel with standard deviation σ = Lx/40. The simulation time was short
enough to avoid effects from the periodic boundary conditions.

Figure 9 illustrates the two limiting behaviors of sound propagation in the underdamped regime
and diffusion in the overdamped regime. The gap height in Figs. 9(a) and 9(b) is ten times larger
than in Figs. 9(c) and 9(d), while all other parameters are kept constant. Note that in both cases there
is no single well-defined wavelength, but we take the width of the wave package as the dominant
contribution and use it to distinguish between underdamped and overdamped behavior.

In the underdamped case, the initial Gaussian density profile separates into two wavelets propa-
gating to the left and right. Here we show only the right half of the symmetric profiles. Figure 9(b)
shows the propagated distance over time. Hence, the slope tells us the speed of sound, which
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FIG. 8. Transition from underdamped to overdamped dynamics. The last four sound relaxation times in
the underdamped regime are shown as green diamonds. After reaching the critical wavelength, we obtain
two real eigenvalues from Eq. (19). One leads to a converging relaxation time for momentum perturbations
(lower branch of the dashed line), the other one to a diverging relaxation time for density perturbations
(upper branch of the dashed line). For α = 1.5 and box lengths of 941.2σ and 1411.8σ , we characterize
three modes in the overdamped regime with our MD calculations. Error bars are smaller than the symbols
size. The fits to the simplified (exponential) autocorrelation functions are shown in the inset, and the resulting
relaxation times of density and momentum modes are shown as upward and downward pointing triangles,
respectively.

unsurprisingly yields cT, the isothermal sound speed as defined by the initial choice of an equation of
state.

In the overdamped case, the same initial density perturbation decay is purely diffusive. Here we
measured the variance σ 2 of the density distribution as shown in Fig. 9(d). The linear relationship
clearly illustrates the diffusive transport, and the diffusion coefficient is given by Dρ = σ σ̇ (t ). The
slope is unity in the normalized representation, which leads to

Dρ = 1

τk2
crit

= h2c2
T

12ν
. (29)

E. Effective gap height and slip length

Transverse momentum fluctuations do not propagate and are therefore unaffected by the tran-
sition at λcrit . Due to their simple functional form and the excellent agreement of predicted and
measured relaxation times in Fig. 6(a), we propose the following method to quantify viscosity
and slip in confined systems using long-wavelength correlations. Instead of predicting the tran-
sition from quadratic scaling to constant relaxation time using bulk and interfacial properties
as in Sec. IV B, we fit Eq. (24a) to data obtained from MD. Thus, the characteristic transition
enables us to obtain both viscosity and slip length as fitting parameters. The results for such
a fitting procedure for the slip length is shown in Fig. 10(a) for various fluid-wall interaction
energies.

The highest shear relaxation time can be observed when a purely repulsive Weeks-Chandler-
Anderson (WCA) potential [66] is used for the wall-fluid interaction. The relaxation time decreases
with increasing strength of attractive forces between fluid and wall atoms.
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(a) (b)

(c) (d)

FIG. 9. Time evolution of a small, Gaussian-shaped density perturbation in a slit geometry. The gap
height in panel (a) is large enough to accommodate sound waves. Panel (b) shows the propagated distance
�x over time t , rescaled by the critical wave number kcrit and the long-wavelength sound attenuation time
τ = limk→kcrit τ‖, respectively. Therefore, we recover the sound speed cT = 1/τkcrit from the slope of the curve.
In panel (c) the gap height is one order of magnitude smaller, which leads to a purely diffusive behavior. Panel
(d) shows the variance σ 2 over time, rescaled by the squared critical wave number and sound attenuation time,
respectively. Hence, the slope is proportional to the corresponding diffusion coefficient Dρ = h2c2

T/12ν. Only
the r.h.s. of the symmetric profiles is shown in (a) and (b).

With increasing wall fluid interaction, from purely repulsive to α = 1.5, the effective viscosity
increased by about 8.1 %. Compared to the bulk, the kinematic shear viscosity increased by 13.0 %.
From the effective gap height, we obtain the slip length b from Eq. (15), and the results are shown in
Fig. 10(b). For comparison, we performed nonequilibrium MD simulations of identical (but shorter)
systems using moving walls. We extracted the velocity profiles from these shear simulations by
computing time averages over slices along the gap coordinate, and calculated the slip length from
fits to the linear Couette profiles. We obtained similar slip lengths for both methods; however, with
increasing wall-fluid interaction, the slip lengths from nonequilibrium runs tend to zero slip, whereas
the equilibrium slip lengths start to saturate at α � 1.0.

V. DISCUSSION

Onsager’s principle [67], the fact that small fluctuations around an equilibrium state diffuse
and propagate in the same way as large nonequilibrium perturbations, is the foundation of several
methods to obtain transport coefficients from time correlations of collective variables at equilibrium,
with Green-Kubo methods [30,31] being the most prominent ones. In this work we exploit this
theoretical framework to study hydrodynamic correlations in confined systems. In contrast to the
seminal work by Bocquet and Barrat [40,41], we considered averages over the confining dimension
and explicitly probed long wavelengths using elongated simulation boxes.

The autocorrelation functions of density and momentum fluctuations in confined fluids have
the same functional form as in the bulk, but transport coefficients strongly deviate from the bulk
expressions. In a previous work, Porcheron and Schoen [52] came to the same conclusion, namely,
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FIG. 10. Shear attenuation time for varying wall-fluid interaction and comparison to the bulk (a). The dash-
dotted blue line illustrates a fit to the bulk relaxation time, and dashed lines show the wavelength-dependent
shear relaxation time τ⊥(k) [Eq. (24a)] fitted to the data from confined systems. Error bars in (a) are always
smaller than the symbols size. The long-wavelength limit of the relaxation time determines the effective gap
height, and since the geometric gap height is known, we can directly compute the slip length b using the
definition of κ . Results of this fit procedure are shown in (b) for varying fluid wall interactions α and are
compared to nonequilibrium calculations to obtain the slip length. The dashed lines in (b) are a guide to
the eye.

that the functional form of the correlation function does not depend on confinement, but the transport
coefficients therein do. However, they considered only pure slip boundary conditions, such that
momentum fluxes at the walls disappear. In this case, averaging the hydrodynamic equations over
the gap height leads to a “true” two-dimensional fluid with vanishing source term in Eq. (8).
Hence, the transition to finite relaxation times and the overdamped sound regime do not emerge
and are difficult to observe in MD simulations if small boxes are used, as shown in Figs. 6 and 7.
Then the interface only implicitly affects the relaxation constants, e.g., by viscosity changes due
to commensurability effects between the gap height and the periodicity of fluid layering [52]. A
clear distinction between interfacial and fluid friction as recently suggested by Zhou et al. [68] is
therefore difficult, when ordering effects reach far into the fluid region and confining dimensions
are small.

Ordering effects are small in the presented MD simulations of confined LJ fluids, and therefore
prediction of the spectral relaxation behavior based on bulk fluid properties works well in most
situations. The prediction works particularly well for transverse modes, as shown in Fig. 6(a), where
the shear viscosity and slip length has been obtained from reference simulations in equivalent MD
setups. In fact, fits to transverse momentum autocorrelation functions as proposed by Palmer [32] are
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an established method to calculate the viscosity at equilibrium [69] and has been recently extended
by Cheng and Frenkel [33] to compute heat conductivity from density correlations.

Quantification of slip in MD simulations is of great importance for the understanding of confined
fluid systems, e.g., for multiscale simulations of fluid transport [70] or lubrication [22]. The
characteristic transition from bulklike to wavelength-independent relaxation offers a new path to
determine the slip length at equilibrium, as illustrated in Fig. 10. The proposed method is in the
spirit of the early work by Palmer [32] and has the advantage that both interfacial slip and the shear
viscosity of the fluid can be determined simultaneously. This can be seen as extension to a similar
approach by Sokhan and Quirke [71], where viscosity is an input parameter that has to be taken
from literature or is obtained from separate MD simulations.

Figure 10(a) highlights that even for purely repulsive fluid-wall interactions relaxation times
eventually converge to a finite limit with increasing wavelength. Hence, the limit of infinite slip,
where Galilean invariance is fully restored, is impossible to reach with MD simulations of inter-
acting fluid and wall atoms. However, in the case of ultra-low interfacial friction, it requires large
wavelengths to observe deviations from a bulk system which are usually not probed in conventional
MD systems.

The prediction of the slip length based on the equilibrium simulations have been compared with
results from nonequilibrium calculations in Fig. 10(b). Slip lengths from both calculations decay
exponentially with increasing wall fluid interaction. Equilibrium results seem to converge towards a
finite slip length of approximately one atomic diameter, which is probably the closest one can get to
a no-slip boundary condition in an atomistic system. This agrees with other equilibrium slip length
measurements [72], suggesting that friction converges and leads to a small but finite slip length,
even for strong fluid-wall interaction. Nonequilibrium measurements rely on linear extrapolation
of the velocity profiles to obtain the slip length, which is very sensitive to the exact location of
the fluid-wall interface. This might explain the deviation of the nonequilibrium results at higher
interaction energies. For practical use of the proposed method, shorter box sizes on the order of a
few gap heights might be sufficient, which drastically reduces the computational effort compared to
the MD setup shown here.

The question whether slip is an intrinsic property of the solid-liquid interface is still under debate,
mostly driven by inconsistencies between various proposed Green-Kubo relations for interfacial
friction [41,72–74]. Recently Camargo et al. [75] derived a nonlocal hydrodynamic theory for a fluid
in contact with a solid sphere. Considering only a small volume at the interface and macroscopic
flows [76], slip boundary conditions emerge from the underlying microscopic dynamics. These
boundary conditions contain a Green-Kubo relation for the interfacial friction that formally agrees
with the expression of Barrat and Bocquet but in practice suffers from the plateau problem [77].
Here we compare measured correlations with a local hydrodynamic description of the confined film
to obtain the slip length, but it would be interesting to test whether this also holds in the framework
of generalized hydrodynamics.

Longitudinal momentum relaxation times show a similar behavior as in the transverse direction,
as shown in Fig. 6(b). Yet, in contrast to the transverse case, sound absorption depends on viscous
and thermal effects. Therefore, predicted relaxation times for the bulk system based on literature
data and our own simulation are slightly above the ones obtained from the autocorrelation functions.
The isothermal theory for confined systems accurately describes the long wavelength relaxation,
since the time required for heat to diffuse along the lateral direction is long enough to assume
isothermal conditions. However, at short wavelengths, the theory overestimates relaxation times, but
the prediction can be improved by considering thermal effects in the bulk contribution to the overall
relaxation. Remaining deviations between our prediction and the data might be due to viscosity
enhancement in the confined system compared to the bulk due to ordering effects introduced by the
walls, as discussed above.

The role of thermal effects in the presented MD results is highlighted in Fig. 6(c). Relaxation
times for the Rayleigh process contribution in the density autocorrelation function obtained from
bulk and confined systems are indistinguishable, since rigid walls are used. In this context, rigid
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walls imply that there is no thermal coupling between fluid and wall atoms, since wall atoms do
not vibrate, i.e., there is no heat flux across the interface. In analogy to wall slip described above,
this represents an idealized situation with a perfect “thermal slip” condition, i.e., an interface with
infinite Kapitza length [78]. Therefore, a similar transition to finite relaxation times is expected for
systems with vibrating walls, which is shown in Fig. 6(c), but is not the main focus of this paper.

Instead, we focus on the long-wavelength behavior of propagating modes. The dispersion
relation [Eq. (20)] is dominated by the longitudinal relaxation time in the long-wavelength limit
and therefore independent of thermal effects. Hence, considering vibrating walls does not affect
the existence of the transition to overdamped sound. As shown in Fig. 7, both sound period and
accordingly the velocity of sound in confined fluids can be adequately described with Eq. (20). In
bulk fluids, dispersion is usually observed at molecular lengths scales, where transport coefficients
depend on wavelength, and short-term memory effects have to be considered within a generalized
hydrodynamic theory [34]. In confined systems, dispersion is an intrinsic property of the system,
where both fluid and interfacial properties determine the length scale at which it becomes effective.

The predicted bifurcation into diverging density and converging momentum relaxation times in
the overdamped regime has been confirmed by our simulations in very large systems, as shown in
Fig. 8. Hence, long-wavelength modes in confined systems are transported entirely by diffusion.
The short-lived longitudinal momentum correlations can be interpreted as discrete “jumps” of a
wave package that bring about diffusive mass transport in hydrodynamic systems with additional
dissipation due to walls, similar to Fickian diffusion for discrete particles. The size of typical
MD simulations of confined fluids does not probe this limit, although it might be the dominant
transport mechanism in real confined systems. For instance, Cheng and Giordano [47] measured slip
lengths of 25 nm in a 50 nm thin channel for hexadecane on photoresist-coated glass. The critical
wavelength for this system is on the order of micrometers, thus reaching into the frequency range
of ultrasound applications.

The results of our continuum simulations shown in Fig. 9 illustrate the effect of overdamped
sound in a nonequilibrium scenario. By reducing the gap height, we interpolate between sound
propagation and diffusion, as initially suggested by Ramaswamy and Mazenko [24]. The empirically
determined diffusion coefficient agrees with the one reported in Ref. [79]. Transition to overdamped
behavior may also lead to arrest of an initially propagating wave package due to spread related
to dissipation in the underdamped regime or due to spatially varying gap height or wall slip.
Furthermore, the dynamic response of a system, e.g., in oscillating flows, might be altered by the
presence of overdamped sound modes. This suggests further work on the role of overdamped sound
in heterogeneous or nonequilibrium confined systems. Hybrid methods that couple an atomistic
description to a fluctuating continuum scheme in the spirit of earlier work for bulk systems [80]
might be suitable to study these systems.

VI. CONCLUSION

In this work we showed that correlations of the hydrodynamic conserved variables in confined
fluids can be derived from an isothermal height-averaged description of continuum balance equa-
tions. The functional form of hydrodynamic correlation functions remains equivalent to the bulk, but
characteristic timescales therein are affected by confinement. We focused on the lateral wavelength
dependence of relaxation times and phase velocities. The continuum description predicts a tran-
sition to constant relaxation times of density and momentum perturbations, which we confirmed
by upscaling MD simulations to the long wavelength limit. Furthermore, our theory contains a
geometry-dependent dispersion relation for the speed of sound in the long-wavelength limit, which
leads to a transition from underdamped to overdamped dynamics, which is also evident from the
MD simulations. Large MD boxes are required to probe the overdamped limit, but the transition
can be on the order of the system size in highly confined fluids. Hence, diffusive contributions to
lateral mass transport might be systematically neglected in finite systems. Finally, we proposed an
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equilibrium method to calculate the slip length in confined MD systems based on our findings,
which shows accurate results when compared to a nonequilibrium reference.
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APPENDIX A: EFFECTIVE GAP HEIGHT WITH SLIP

The effective gap height heff = √
κh can be obtained from Eq. (14), with a parabolic slip velocity

profile

u(z) = az(z − h) + U2 − U1

h
z + U1, (A1)

where U1 and U2 are the slip velocities at the bottom and top wall, respectively. The corresponding
no-slip velocity profile is

u∗(z) = az(z − heff ). (A2)

The definition of the Navier slip length relates U1 and U2 with b1 and b2 through

U1 = u′(0)b1,

U2 = −u′(h)b2, (A3)

such that we can substitute

U2 − U1

h
= ah

b1 − b2

h + b1 + b2
(A4)

and

U1 =
(

b1 − b2

h + b1 + b2
− 1

)
ahb1 (A5)

in Eq. (A1). Evaluating Eq. (14) eventually leads to

h2
eff =

[
1 + 6b1

h
− 3

b1 − b2

h + b1 + b2

(
1 + 2b1

h

)]
︸ ︷︷ ︸

=:κ

h2. (A6)

APPENDIX B: IMAGINARY PARTS

The imaginary parts of the solution to Eq. (16) are shown here for completeness:

Im[ρ(k, t )] = − j‖(k, 0)

sT
e
− t

τ‖ sin(sTkt ),

Im[ j‖(k, t )] = −ρ(k, 0)e
− t

τ‖

(
sT − 1

sTτ 2
‖ k2

)
sin(sTkt ). (B1)
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APPENDIX C: EFFECTIVE RELAXATION FOR OVERDAMPED DYNAMICS

The limiting behavior of Eq, (23) in the overdamped regime is easily obtained by taking the limit

lim
k→0

isTk = lim
k→0

−
√(

6ν

h2κ

)2

− cTk2 = − 6ν

h2κ
. (C1)

Hence, the normalized Fourier coefficients of longitudinal momentum fluctuations are identical to
the transverse ones:

lim
k→0

j̃‖(k, t ) = exp

(
− 6ν

h2κ

)[
cosh

(
− 6ν

h2κ

)
+ sinh

(
− 6ν

h2κ

)]

= exp

(
−12ν

h2κ

)
= j̃⊥(k, t ). (C2)

However, the normalized Fourier coefficients of density fluctuations become

lim
k→0

ρ̃(k, t ) = exp

(
− 6ν

h2κ

)[
cosh

(
− 6ν

h2κ

)
− sinh

(
− 6ν

h2κ

)]
= 1, (C3)

and we are now interested how this limit is reached. For the sake of brevity, we write a ≡ 6ν/h2κ

and b ≡ −isT =
√

(a/k)2 − c2
T with cT < a/k,

ρ̃(k, t ) = e−at

[
cosh(bkt ) + a

bk
sinh(bkt )

]
, (C4)

where we have used the symmetries of the hyperbolic functions. At times t0 much larger than a
characteristic time of the system (t0 � 1/bk), we can assume sinh(bkt0) = cosh(bkt0). Expanding

FIG. 11. Same as Fig. 3(c), but with the effective long-time expression for ρ̃(k, t ). The expansion shown
in Eq. (C5) is around t0 = 2/a, and except for the critically damped mode, we obtain a good agreement with
the original form for large t .
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˜ρ(k, t ) around t0 leads to

ρ̃(k, t ) = ρ̃(k, t0) + bk + a

bk
e−at0 cosh(bkt0)

×
[

(bk − a)(t − t0) + 1

2!
(bk − a)2(t − t0)2 + · · ·

]

= ρ̃(k, t0)

[
1 + (bk − a)(t − t0) + 1

2!
(bk − a)2(t − t0)2 + · · ·

]
= ρ̃(k, t0)e(bk−a)(t−t0 ). (C5)

At long times, density modes in the overdamped regime decay exponentially in time with a rate
bk − a < 0, where a is a geometry-dependent constant and bk − a ∼ O(k2) as shown in Fig. 11.
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