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a b s t r a c t 

We generalize and provide a linear algebra-based perspective on a finite element (FE) ho- 

mogenization scheme, pioneered by Schneider et al. (2017)[1] and Leuschner and Fritzen 

(2018)[2]. The efficiency of the scheme is based on a preconditioned, well-scaled refor- 

mulation allowing for the use of the conjugate gradient or similar iterative solvers. The 

geometrically-optimal preconditioner—a discretized Green’s function of a periodic homo- 

geneous reference problem—has a block-diagonal structure in the Fourier space which per- 

mits its efficient inversion using fast Fourier transform (FFT) techniques for generic regular 

meshes. This implies that the scheme scales as O(n log (n )) , like FFT, rendering it equiva- 

lent to spectral solvers in terms of computational efficiency. However, in contrast to clas- 

sical spectral solvers, the proposed scheme works with FE shape functions with local sup- 

ports and does not exhibit the Fourier ringing phenomenon. We show that the scheme 

achieves a number of iterations that are almost independent of spatial discretization. The 

scheme also scales mildly with phase contrast. We also discuss the equivalence between 

our displacement-based scheme and the recently proposed strain-based homogenization 

technique with finite-element projection. 

© 2023 Published by Elsevier Inc. 

 

 

1. Introduction 

Complex macroscopic phenomena such as deformations during plastic yielding or simulating damage to materials are 

governed by the nonlinear behavior of such materials at meso-, micro-, or nanoscales. This intrinsic multiscale aspect of 

the behavior of materials has created a demand for the development of specialized techniques that bridge scales [3–5] . We

focus here on an image-based homogenization technique [6] that combines the characterization of material microstructures 

using high-resolution images (originating, e.g., from micro-computed tomography [7] or geometry-based models [8] ) and 

the numerical solution of an underlying partial differential equation (PDE) with a coefficient defined on a regular grid and 

typically involving periodic boundary conditions. 

The solution of such PDEs discretized with the conventional finite element (FE) is challenging even in the simplest scalar 

elliptic case, because it results in a system of equations with millions to billions of unknowns [9, Section 7.6] . In this regard,
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iterative solvers are clearly preferable to direct solvers in terms of computation, because they have lower memory footprints 

and are faster than direct solvers, with the conjugate gradient (CG) method [10] being the optimal iterative solver for sym-

metric positive definite system matrices to the best of our knowledge. However, the convergence behavior of the CG method 

depends on the spectral properties of the linear system matrix and deteriorates as FE mesh size decreases [9, Section 7.7] . 

More than two decades ago, Moulinec and Suquet in their seminal works [11,12] , proposed a method that resolved these

issues. According to the original interpretation of their method, fixed-point iterations involving convolution with the Green’s 

function of an auxiliary homogeneous problem are employed with data and unknowns defined directly on an input grid. This 

method is suitable for high resolution homogenization problems thanks to the efficient implementation of the convolution 

step using the fast Fourier transform (FFT) algorithm [13] and a number of iterations that does not depend upon mesh size.

In the community investigating the computational mechanics of materials, these features attracted great interest, as doc- 

umented in three recent surveys by Schneider [14] , Lucarini et al. [15] , and Gierden et al. [16] . We outline the developments

most relevant to our work directly below and refer interested readers to Schneider [14] , Lucarini et al. [15] , Gierden et al.

[16] for more in-depth discussion of FFT-based methods. 

Conjugate gradient solvers As reported independently by Brisard and Dormieux [17] and Zeman et al. [18] , the original

spectral scheme [11,12] can be further accelerated when replacing the fixed-point algorithm with the CG method. These 

computational observations were confirmed by Brisard and Dormieux [19] , who showed that their computational scheme 

[17] follows from the Ritz discretization of the Hashin–Shtrikman variational principles. Vond ̌rejc et al. [20] also showed that

the Zeman et al.’s [18] computational scheme follows from the Fourier–Galerkin discretization of the underlying PDE. These 

results directly extended to nonlinear problems linearized by Newton’s method, as first reported by Gélébart and Mondon- 

Cancel [21] and Kabel et al. [22] for Green’s function framework and by Zeman et al. [23] and de Geus et al. [24] for the

Fourier–Galerkin framework. 

Oscillations Because stress or strain fields may exhibit discontinuities at the interphases between different phases of 

materials, discretizing the problem by Fourier trigonometric polynomials results in spurious numerical oscillations (also 

referred to as “Fourier ringing artifacts” in Section 2.5 of [14] ) that pollute the approximate results. To reduce these oscilla-

tions, Kaßbohm et al. [25] smoothed the data for the material under investigation, and Shanthraj et al. [26] filtered out high

Fourier frequencies from the solution fields. A different approach was used by Willot et al. [27] , who considered a modified

Green’s function obtained from a finite difference discretization. Schneider et al. [28] extended this approach by propos- 

ing a staggered grid finite difference approximation to the underlying PDE, with a follow-up study [1] on FE discretization

employing linear hexahedral elements. A related approach building on bi/trilinear FE basis functions instead of the Fourier 

basis was proposed by Leuschner and Fritzen [2] . Most recently, Leute et al. [29] developed a compatibility projection-based

method in the spirit of Refs. [23,24] while considering several finite difference- and finite element-based discretization sten- 

cils. Further discussion on mitigating the oscillation phenomena can be found in a dedicated comparative study from Ma 

et al. [30] and in Sections 2.5 and 2.6 of Schneider [14] . 

Our work We developed an alternative FFT-accelerated, oscillation-free computational homogenization strategy based 

purely on FE discretization that scales quasilinearly with mesh size. We explain the procedure using a nonlinear small-strain 

elasticity micromechanical problem 

1 discretized on a regular periodic grid with the FE method in Section 2 and linearize 

it with Newton’s method in Section 3 . Note that localized support of the FE basis functions directly resolves the oscillation

issue, see, e.g., Leute et al. [29] . Thus, no additional artificial adjustments of the data or the solution are needed. 

In Section 4 , we overcome the main drawback of the FE discretization—deteriorating conditioning of the linear system 

as the size of the discretization grid increases—using a suitable preconditioner. Similar to Schneider et al. [1] , Leuschner

and Fritzen [2] , we construct the preconditioner from the stiffness matrix of a reference problem with generally anisotropic, 

spatially uniform data about a material discretized on the same regular grid as the original problem. Using classical results, 

see e.g., Axelsson and Karátson [32 , Section 5.1.2], we can guarantee that the condition number of the preconditioned linear

system becomes almost independent of the mesh size. Moreover, employing local ratios of the data of the material used in

the problem and the data of the material used in the reference problem, we can localize all individual eigenvalues [33–35] .

This may help in creating better predictions about the convergence of the CG method, see, e.g., Gergelits et al. [34 , Section 2].

Therefore, the iterative CG solver is an optimized choice for the solution of problems with highly resolved microstructures. 

The application of the preconditioner is presented in detail in Section 5 , with emphasis on reducing its computational

complexity using the FFT algorithm [36] . Our formulation is built for an unknown displacement field, like those in Willot

et al. [27] , Grimm-Strele and Kabel [37] , Lucarini and Segurado [38] . However, in Section 6.1 , we show that these results are

fully transferable to formulations with unknown strain-fields, see e.g., Zeman et al. [23] , Schneider et al. [28] , Leute et al.

[29] . Section 6.2 is devoted to a comparison of our scheme to related developments described by Schneider et al. [1] and

Leuschner and Fritzen [2] . 

We demonstrate the main features of the proposed methodology by examples collected in Section 7 that cover two- 

dimensional linear thermal conduction (with the necessary adjustments outlined in Appendix A), three-dimensional lin- 

ear small-strain elasticity, and two-dimensional nonlinear finite-strain elasto-plasticity, and we conclude our work in 
Section 8 . 

1 Note that this scheme only considers an imposed macroscopic strain. We expect that for other loading scenarios, the methodology proposed in Lucarini 

and Segurado [31] can be used in its strain-based version. 
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Fig. 1. A rectangular two-dimensional cell Y = 
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×
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]
with outlined periodic microstructure. 

 

 

 

 

 

 

 

 

 

Notation We denote d-dimensional vectors and matrices with boldface letters: a = (a α) d α=1 
∈ R 

d or A = (A αβ ) d 
α,β=1 

∈
R 

d×d . Matrix-matrix and matrix-vector multiplications are denoted as C = B A and c = B a . Vectors and matrices arising from 

the discretization are denoted as a and A , to highlight their special structure. The (I) th component of a is denoted as a [ I]

and (I, J) th component of A is denoted as A [ I, J] . The Euclidean norm of vector a , 
√ 

a T a , is denoted as ‖ a ‖ , and the A -norm

of vector a , 
√ 

a T A a , is denoted as ‖ a ‖ A . We consider a general d-dimensional setting throughout the paper. However, for the

sake of readability, we use d = 2 in the expanded form of matrices, such as in Eq. (1) . 

2. Nonlinear small-strain elasticity 

We consider a d-dimensional rectangular periodic cell Y = 

∏ d 
α=1 

[
− l α

2 , 
l α
2 

]
, of volume |Y| = 

∏ d 
α=1 l α , to be a repre-

sentative volume element, i.e., a typical material microstructure; see Fig. 1 for an illustration. The symmetries of small- 

strain elasticity allow us to employ the Mandel notation and reduce the dimension of the second-order strain tensor 

∇ s u = 

1 
2 (∇ u + ∇ u 

T ) : Y → R 

d×d 
sym 

to a vector ∂ u : Y → R 

d m , where ∂ is the symmetrized gradient operator such that, for

d = 2 , 

∂ u = 

( 

(∇ s u ) 11 

(∇ s u ) 22 √ 

2 (∇ s u ) 12 

) 

= 

⎛ ⎝ 

∂ 
∂x 1 

0 

0 

∂ 
∂x 2 √ 

2 
2 

∂ 
∂x 2 

√ 

2 
2 

∂ 
∂x 1 

⎞ ⎠ 

(
u 1 

u 2 

)
. (1) 

Similarly, a fourth-order tensor C : Y → R 

d ×d ×d ×d 
sym 

is represented by a matrix C : Y → R 

d m 

×d m , 

C = 

⎛ ⎝ 

C 1111 C 1122 

√ 

2 C 1112 

C 2211 C 2222 

√ 

2 C 2212 √ 

2 C 1211 

√ 

2 C 1222 2 C 1212 

⎞ ⎠ , 

where the number of components of the symmetrized gradient in the Mandel notation is d m 

= 

(d + 1) d 

2 
, and indices

αm 

, βm 

, γm 

∈ { 1 , . . . , d m 

} . 
In the small-strain micromechanical problem, we split the overall strain ε : Y → R 

d m into an average strain e =
1 

|Y| 
∫ 
Y ε ( x ) d x ∈ R 

d m and a periodically fluctuating field ∂ ̃  u : Y → R 

d m , 

ε ( x ) = e + ∂ ̃  u ( x ) for all x ∈ Y. 

Here, ∂ ̃  u denotes the symmetrized gradient in the Mandel notation, and the fluctuating displacement field ˜ u belongs to the 

space of admissible functions 

V = 

{
˜ v : Y → R 

d , ˜ v is Y -periodic , 
∫ 
Y ̃  v d x = 0 

}
. The governing equations for ∂ ̃  u are the mechanical equilibrium conditions 

−∂ T σ( x , e + ∂ ̃  u ( x ) , g ( x )) = 0 for all x ∈ Y, 

in which σ : Y × R 

d m × R 

g → R 

d m is the stress field and g : Y → R 

g designates the vector of internal parameters. The equi-

librium equations are converted to the weak form ∫ 
Y 
∂ ̃  v ( x ) T σ( x , e + ∂ ̃  u ( x ) , g ( x )) d x = 0 for all ˜ v ∈ V, (2) 
3 
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Fig. 2. Example of regular periodic FE grids with associated discretization stencils for a two-dimensional cell Y . All grids consist of 16 pixels ( N p = 16 ). 

Row (1) shows: (a.1) a grid with 16 discretization nodes ( N I = 16 ) and quadrature points ( N Q = 64 ), (b.1) a grid with 16 discretization nodes ( N I = 16 ) and 

32 quadrature points ( N Q = 32 ), (c.1) a grid with 32 discretization nodes ( N I = 32 ) and 64 quadrature points ( N Q = 64 ). Row (2) shows: (a.2) a one-node 

stencil ( N n = 1 ) with one bilinear rectangular element and four quadrature points with quadrature weights w 

Q = 

1 
4 

V p , (b.2) a one-node stencil ( N n = 1 ) with 

two linear triangular elements and two quadrature points with quadrature weights w 

Q = 

1 
2 

V p , (c.2) a two-node stencil ( N n = 2 ) with four linear triangular 

elements and four quadrature points with quadrature weights w 

Q = 

1 
4 

V p , Here, V p denotes pixel volume, such that V p N p = |Y| . 

 

 

 

 

 

 

 

where ˜ v is the test displacement field. The weak form (2) serves as the starting point for the FE method. 

3. Finite element discretization 

For the discretization of the weak form (2) , we use a uniform mesh and conforming FE basis functions. In our setting,

the discretization mesh does not necessarily follow the regular pixel/voxel structure, but can correspond to a space-filling 

pattern of finite elements; see the first row in Fig. 2 . The discretization mesh is generated by a periodic repetition of a

discretization stencil in cell Y; see the second row in Fig. 2 . Such flexibility in discretization is useful, e.g., for strain-softening

damage or for plasticity material models that exhibit sensitivity to mesh-grid anisotropy. 

Strain and stress fields are evaluated at quadrature points x Q q , Q ∈ { 1 , 2 , . . . , N Q } , cf. Fig. 2 , and the displacement fields

are sampled at discretization nodes x I n , I ∈ { 1 , 2 , . . . , N I } . The number of discretization nodes N I = N p N n is given by the num-

ber of pixel/voxel-associated discretization stencils N p and the number of nodes per stencil N n , as explained in Fig. 2 . The

number of degrees of freedom per stencil is thus d N n and the total number of degrees of freedom per domain is d N I . 

Following standard FE theory, ˜ v and ˜ u are approximated by continuous element-wise polynomials P k of the degree k ; 

their symmetrized gradients ∂ ̃ v and ∂ ̃  u then become element-wise polynomials of the degree up to k . Furthermore, the 

integral (2) can be approximated with a suitable quadrature rule, ∫ 
Y 
∂ ̃  v ( x ) T σ( x , e + ∂ ̃  u ( x ) , g ( x )) d x 

≈
N Q ∑ 

Q=1 

∂ ̃  v ( x Q q ) 
T σ( x Q q , e + ∂ ̃  u ( x Q q ) , g ( x 

Q 
q )) w 

Q , 

(3) 

where the positions of the quadrature points x Q q and the quadrature weights w 

Q depend on the choice of the quadrature

rule 2 
2 Note, that under-integrated quadrature rules can be used to reduce the computational memory footprint. However, the quality of the solution field can 

then deteriorate; see Section 7 for explicit examples. 

4
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Every component ˜ u α of the unknown vector ˜ u is approximated by a linear combination 

˜ u α( x ) ≈ ˜ u 

N 
α( x ) = 

N I ∑ 

I=1 

˜ u 

N 
α( x I n ) φ

I ( x ) for all x ∈ Y, 

where the coefficients ˜ u N α( x I n ) are the nodal values of ˜ u N α at discretization nodes x I n and φI are FE basis functions. A partial

derivative of this approximation 

∂ ̃  u 

N 
α( x ) 

∂x β
= 

N I ∑ 

I=1 

˜ u 

N 
α( x I n ) 

∂φI ( x ) 

∂x β
for all x ∈ Y, 

evaluated in the quadrature points is given by 

∂ ̃  u 

N 
α( x Q q ) 

∂x β
= 

N I ∑ 

I=1 

˜ u 

N 
α( x I n ) 

∂φI ( x Q q ) 

∂x β
for Q = 1 , . . . , N Q . 

Therefore, if we store the nodal values of displacement ˜ u ( x I n ) into a vector ˜ u ∈ R 

d N I , the gradient vector ∂ ̃  u ∈ R 

d m 

N Q at all

quadrature points is given with 

∂ ̃  u = D ̃  u = 

[ 

D 1 0 

0 D 2 √ 

2 
2 

D 2 

√ 

2 
2 

D 1 

] [
˜ u 1 
˜ u 2 

]
, (4) 

where the matrix D ∈ R 

d m 

N Q ×d N I consists of sub-matrices of the partial derivatives 

D β [ Q, I] = 

∂φI ( x Q q ) 

∂x β
for Q = 1 , . . . , N Q and I = 1 , . . . , N I , (5) 

and ˜ u α stores values of the displacement in the direction α. Due to the local supports of the basis functions φI , these sub-

matrices exhibit significant sparsity, e.g., for the element-wise linear approximation shown in the middle of Fig. 2 , each row

of D β contains only two nonzero entries. Since both the interpolating and quadrature points are periodically distributed 

in Y , the matrix D β has a block circulant structure. 

Now, the discretized weak form (2) using quadrature (3) can be rewritten in the matrix notation as 

˜ v T D 

T W σ( e + D ̃  u , g ) = 0 for all ˜ v ∈ R 

d N I , (6) 

where ˜ v stores the nodal values of test displacements, e ∈ R 

d m 

N Q stands for the discretized average strain, σ : R 

d m 

N Q ×
R 

g N Q → R 

d m 

N Q is a nonlinear map transforming, locally at quadrature points, a vector of discrete strains and internal pa-

rameters g ∈ R 

g N Q to discrete stresses, and the diagonal matrix W ∈ R 

d m 

N Q ×d m 

N Q 

W = 

[ 

W m 

0 0 

0 W m 

0 

0 0 W m 

] 

(7) 

consists of d m 

identical diagonal matrices W m 

∈ R 

N Q ×N Q storing quadrature weights, W m 

[ Q , Q ] = w 

Q . 

Because vector ˜ v is arbitrary, the discretized weak form (6) is equivalent to a system of discrete nonlinear equilibrium 

conditions 

D 

T W σ( e + D ̃  u , g ) = 0 . (8) 

3.1. Linearization 

We employ Newton’s method to solve the nonlinear system (8) iteratively. For this purpose, the (i + 1) th approximation

of the nodal displacement ˜ u (i +1) ∈ R 

N I is given by the previous approximation ˜ u (i ) ∈ R 

N I adjusted by a finite displacement

increment δ˜ u (i +1) ∈ R 

N I , 

˜ u (i +1) = ̃  u (i ) + δ˜ u (i +1) , 

with an initial approximation ˜ u (0) ∈ R 

N I . The displacement increment δ˜ u (i +1) follows from the solution of the linear system 

D 

T W C (i ) D ︸ ︷︷ ︸ 
K (i ) 

δ˜ u (i +1) = −D 

T W σ( e + D ̃  u (i ) , g (i ) ) ︸ ︷︷ ︸ 
b (i ) 

, (9) 
5 
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where the algorithmic tangent matrix C (i ) = 

∂ σ

∂ ε 
( e + D ̃  u (i ) , g (i ) ) ∈ R 

d m 

N Q ×d m 

N Q , 

C (i ) = 

[ 

C (i )11 C (i )12 C (i )13 

C (i )21 C (i )22 C (i )23 

C (i )31 C (i )32 C (i )33 

] 

, 

is obtained from the constitutive tangent C (i ) ( x ) = 

∂ σ

∂ ε 
( x , e + ∂ ̃  u (i ) ( x ) , g (i ) ( x )) , evaluated at the quadrature points. Therefore,

the sub-matrices C (i ) αm 

βm 

∈ R 

N Q ×N Q are diagonal with entries C (i ) αm 

βm 

[ Q , Q ] = C (i ) αm 

βm 

( x Q q ) . Traditionally, K (i ) ∈ R 

d N I ×d N I de-

notes the matrix of the linear system (9) , and b (i ) ∈ R 

d N I stands for the right-hand side of (9) . 

4. Preconditioning 

Recall that we focus on micromechanical problems with a finely described microstructure that involves many degrees of 

freedom d N I . We aim to use an optimal matrix-free iterative method to find the solution of the linear system (9) . The system

matrix K (i ) is symmetric and positive definite for the symmetric algorithmic tangent C (i ) , which renders the CG method as 

the method of choice, when combined with an appropriate preconditioner. For non-symmetric algorithmic tangents, an al- 

ternative iterative linear solver must be used, e.g., the generalized minimal residual method (GMRES). This section discusses 

the construction of a Green’s function preconditioner and its properties in the FE framework. 

4.1. Reference material-based preconditioner 

The idea of preconditioning, see, e.g., Golub and Van Loan [13 , Section 10.3] and Saad [39 , Chapters 9 and 10], is based

on assumptions that the matrix of the preconditioned linear system 

M 

−1 
(i ) 

K (i ) δ˜ u (i +1) = M 

−1 
(i ) 

b (i ) , (10) 

has more favorable spectral properties than the original system K (i ) δ˜ u (i +1) = b (i ) . At the same time, the preconditioning ma- 

trix M (i ) ∈ R 

d N I ×d N I should be relatively easy to invert, such that the faster convergence of the iterative method compensates 

for the computational overhead of the preconditioning. Please note that system matrix M 

−1 
(i ) 

K (i ) is no longer symmetric. 

However, for symmetric M (i ) and K (i ) , system (10) is equivalent with the system preconditioned in the symmetric form 

M 

−1 / 2 
(i ) 

K (i ) M 

−1 / 2 
(i ) 

δz (i +1) = M 

−1 / 2 
(i ) 

b (i ) , where δz (i +1) = M 

1 / 2 
(i ) 

δ˜ u (i +1) . The latter form is in fact solved using the PCG method; 

see Saad [39 , Section 9.2.1] for more details. Nonetheless, we prefer a notation with left preconditioning (10) for brevity. 

Our approach is based on a preconditioner constructed in the same manner as the original matrix of the linear sys-

tem (9) , 

M (i ) = K 

ref 
(i ) = D 

T W C 

ref 
(i ) D ∈ R 

d N I ×d N I , (11) 

where the reference algorithmic tangent matrix C 

ref 
(i ) 

∈ R 

d m 

N Q ×d m 

N Q corresponds to spatially uniform material data C 

ref 
(i ) 

∈ 

R 

d m 

×d m . Finally, substituting (11) into (10) leads to the preconditioned linear system 

( K 

ref 
(i ) ) 

−1 
K (i ) δ˜ u (i +1) = ( K 

ref 
(i ) ) 

−1 
b (i ) , (12) 

referred to as the “reference material-based preconditioned problem” below. Notice that the spectrum of K 

ref 
(i ) 

contains 

null eigenvalue(s), associated with the infinitesimal rigid body modes; thus, instead of the inverse of K 

ref 
(i ) 

, we consider 

its (Moore–Penrose) pseudo-inverse, 3 but we still denote it with ( K 

ref 
(i ) 

) 
−1 

for notation simplicity. 

In the next section, we explain why we advocate this choice for the preconditioner. First, we derive a computationally 

efficient pseudo-inverse of K 

ref 
(i ) 

and second, we explain how preconditioning impacts the spectral properties of the matrix 

of the system (12) . 

4.2. Fourier pseudo-inversion of 

Regular FE discretization of the problem with periodic boundary conditions leads to the same stencil for every pixel. 

Thus, for the uniform C 

ref 
(i ) 

in the whole Y (at every quadrature point x Q q ), the resulting preconditioning matrix K 

ref 
(i ) 

∈ 

R 

d N n N p ×d N n N p , 

K 

ref 
(i ) = 

[
K 

ref 
(i ) 11 K 

ref 
(i ) 12 

K 

ref 
(i ) 21 K 

ref 
(i ) 22 

]
∈ R 

2 N p ×2 N p , ( for d N n = 2) (13) 
3 For details about the Moore–Penrose pseudo-inverse, refer to Golub and Van Loan [13] . 

6



M. Ladecký, R.J. Leute, A. Falsafi et al. Applied Mathematics and Computation 446 (2023) 127835 

Fig. 3. The block-circulant structure of block K ref 
(i ) ̄αβ̄ from the preconditioner K ref 

(i ) 
for spatially uniform material data C ref 

(i ) 
and the periodic boundary con- 

dition. The two-dimensional ( d = 2 ) discretization grid consisting of 20 pixels ( N p = 20 ) with a one-node stencil ( N n = 1 ) and 20 discretization nodes 

( N I = 20 ) is shown left. Contributions of unit nodal displacement δ˜ u β̄ [ I] = 1 to nodal components of the right-hand side vector, graphically shown in node 

x 6 n , are given as follows: ( ) self contribution, contributions ( ) to the right node, ( ) to the left node, ( ) to the upper left node, ( ) to the upper 

node, ( ) to the bottom node, and ( ) to the bottom right node. 

 

 

 

 

 

consists of (d N n ) 2 block-circulant blocks K 

ref 
(i ) ᾱβ̄

∈ R 

N p ×N p , where ᾱ, β̄ ∈ { 1 , . . . , d N n } . All row vectors of a block-circulant

block K 

ref 
(i ) ᾱβ̄

contain the same information, and each row is block-periodically shifted with respect to the preceding one. 

This directly reflects the periodically repeated discretization pattern; recall Fig. 2 , and that the action of K 

ref 
(i ) ᾱβ̄

is a discrete

convolution of the displacement δ˜ u 
β̄

with the discretization kernel, as schematically shown in Fig. 3 . 

Note that in the one-dimensional ( d = 1 ) case with one node per interval ( N n = 1 ), K 

ref 
(i ) 

has only one circulant block,

K 

ref 
(i ) 

= K 

ref 
(i ) 11 . The block structure of K 

ref 
(i ) 

appears whenever more than one type of degree of freedom is involved, i.e., d > 1 ,

or N n > 1 . 

To make the inversion of K 

ref 
(i ) 

efficient, let us define the discrete d-dimensional Fourier transform matrix F ∈ R 

N p ×N p such 

that F H = F −1 , where F H is the conjugate transpose of F . Then the Fourier counterpart 

̂ K 

ref 
(i ) ᾱβ̄ = F K 

ref 
(i ) ᾱβ̄F H 

to any block-circulant K 

ref 
(i ) ᾱβ̄

is diagonal, and has the same spectrum (eigenvalues) as K 

ref 
(i ) ᾱβ̄

, see, e.g., Frazier [40] . Therefore,̂ K 

ref 
(i ) 

is block-diagonal and cheaply (pseudo) invertible 

( K 

ref 
(i ) ) 

−1 = F H d ( ̂
 K 

ref 
(i ) ) 

−1 
F d = 

[
F H 0 

0 F H 

][̂ K 

ref 
(i ) 11 

̂ K 

ref 
(i ) 12 ̂ K 

ref 
(i ) 21 

̂ K 

ref 
(i ) 22 

]−1 [
F 0 

0 F 

]
, (14) 

where F d = I d N n ⊗ F and I d N n ∈ R 

d N n ×d N n is the identity matrix. The expanded form in (14) applies for d N n = 2 . 

Finally, inserting (14) as the preconditioner in (12) leads to 

F H d ( ̂
 K 

ref 
(i ) ) 

−1 
F d ︸ ︷︷ ︸ 

( K ref 
(i ) ) 

−1 

K (i ) δ˜ u (i +1) = F H d ( ̂
 K 

ref 
(i ) ) 

−1 
F d ︸ ︷︷ ︸ 

( K ref 
(i ) ) 

−1 

b (i ) , (15) 

which reads in the expanded form as 

F H d 

(
F d D 

T WC 

ref 
( i ) 

DF H d 

)−1 
F d ︸ ︷︷ ︸ (

K ref 
( i ) 

)−1 

D 

T WC ( i ) D ︸ ︷︷ ︸ 
K ( i ) 

δ˜ u ( i +1 ) 

= −F H d 

(
F d D 

T WC 

ref 
( i ) 

DF H d 

)−1 
F d ︸ ︷︷ ︸ (

K ref 
( i ) 

)−1 

D 

T W σ
(
e + D ̃

 u ( i ) , g ( i ) 
)︸ ︷︷ ︸ 

−b ( i ) 

. 
(16) 
7 
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4.3. Spectrum of the preconditioned problem 

To support the claim that the system matrix of the linear system (15) is well conditioned, we rely on the results pub-

lished recently in Pultarová and Ladecký [33] , Gergelits et al. [34] , Ladecký et al. [35] that provide simple algorithms for

obtaining guaranteed two-sided bounds for all individual eigenvalues of the preconditioned operator by using element- 

by-element estimates. Note that bounds on extreme eigenvalues obtained by such an element-by-element algorithm were 

introduced first in Axelsson and Karátson [32] , Eijkhout and Vassilevski [41] and have found use, e.g., in algebraic multilevel

methods [42] . Recently, motivated by Nielsen et al. [43] , Gergelits et al. [34] published a new method yielding the bounds

to all individual eigenvalues. This allows not only the condition number of the preconditioned system to be estimated, but 

also enables its spectrum to be characterized, which can provide more specific insights into the convergence of the CG 

method; see, e.g., Gergelits et al. [34 , Section 2] for more details. In [33,35] an alternative algorithm was presented that can

be applied to a variety of problems and discretization methods. 

Let us recall Ladecký et al.’s approach [35] . Thanks to the local supports of FE basis functions φI all eigenvalues of the

preconditioned linear system matrix can be estimated (15) . For each φI , we calculate 

λL 
I = min 

x Q q ∈ supp φI 

λmin 

((
C 

ref 
( i ) 

(
x Q q 

))−1 
C ( i ) 

(
x Q q 

))
, I = 1 , . . . , N I , 

λU 
I = max 

x Q q ∈ supp φI 

λmax 

((
C 

ref 
( i ) 

(
x Q q 

))−1 
C ( i ) 

(
x Q q 

))
, I = 1 , . . . , N I , 

where supp φI denotes the support of φI , and λmin , λmax are the minimal and maximal generalized eigenvalues, respectively. 

For element-wise constant materials C (i ) and C 

ref 
(i ) 

, any quadrature point x Q q can be used to evaluate λmin and λmax on an

element. Therefore, only one pair λmin , λmax has to be calculated for each element. Considering all λL 
I and λU 

I 
d-times and 

sorting these two sets into non-decreasing sequences gives the desired lower and upper eigenvalue bounds. 

The resulting eigenvalue bounds are therefore independent of the characteristic element diameter h , which suggests that 

the condition number 4 κ( ( K 

ref 
(i ) 

) 
−1 

K (i ) ) of the preconditioned linear system (15) will be independent of the size of the 

problem. In contrast to κ( K (i ) ) = O(h −2 ) for the unpreconditioned problem, e.g., Johnson [9 , Section 7.7]. The ratio between

the maximum and minimum eigenvalues of the preconditioned problem (15) will increase with an increasing ratio between 

extreme eigenvalues of C (i ) (so-called material contrast) and decrease as the data for the reference material C 

ref 
(i ) 

approach 

the data for the material C (i ) of the problem. Therefore, we can state that our preconditioner is optimal, or more precisely, as

geometrically optimal , which emphasizes that by keeping the discretization and changing only the data of the preconditioner, 

a matrix can be generated in which all eigenvalues are the same, i.e., the condition number is 1. However, in such cases,

the inversion of the preconditioner becomes more expensive. The effects of phase contrast and the choice of C 

ref 
(i ) 

on the CG

performance are further illustrated with examples presented in Section 7.2 . 

5. Implementation 

The pseudo-algorithm of the incremental Newton-PCG solver for FE discretization on a regular grid is outlined in 

Algorithm 1 . In the first part, we detail a matrix-free implementation. The second part deals with the assembly of the

preconditioner via matrix-free operators, and the third part focuses on the efficient pseudo-inversion of the preconditioner. 5 

5.1. Matrix-free implementation 

As mentioned in the previous sections, the explicit matrix structure is useful in terms of explanation, but computations 

can be performed more efficiently in a matrix-free manner. 

The Gradient. Computational efficiency of a matrix-free implementation relies on the fast evaluation of the gradient vector 

∂ ̃  u = D ̃  u . For regular periodic discretizations, multiplication D ̃  u can be implemented as a convolution of ˜ u with a short 

kernel, namely the gradient stencil. To emphasize this, we replace matrix notations D and D 

T with the (matrix-free) operator 

notation D : R 

d N I → R 

d m 

N Q and D 

T : R 

d m 

N Q → R 

d N I , such that 

D δ˜ u (i +1) = D δ˜ u (i +1) , and D 

T W C (i ) D δ˜ u (i +1) = D 

T W C (i ) D δ˜ u (i +1) . 

These operations are equal from the viewpoint of linear algebra, but algorithmically, D and D 

T are of linear O( N I ) cost. 

The fast Fourier transform. In the same manner, multiplication with the discrete Fourier transform matrix can be replaced 

with the forward and the inverse fast Fourier transform algorithm 

F δ˜ u α, (i +1) = F δ˜ u α, (i +1) and F 

−1 δ˜ u α, (i +1) = F H δ˜ u α, (i +1) , 
4 Please note that by the condition number κ( ( K ref 
(i ) 

) 
−1 

K (i ) ) we mean the ratio of the largest and the smallest eigenvalues of ( K ref 
(i ) 

) 
−1 

K (i ) . 
5 Please note that the matrix-free implementation is one of the options for implementing this FE scheme, and it does not always have to be more efficient 

than assembling local FE matrices for every element in advance and then multiplying the displacement field directly in the CG. This holds especially for FE 

with multiple quadrature points, e.g., trilinear elements with 8 quadrature points. 

8 
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Algorithm 1 Pseudo-algorithm of the displacement-based Newton-PCG solver 

1: Initialize: 

2: ˜ u (0) , e � initial displacement, macroscopic strain 

3: ηNW , ηCG � Newton- and CG-tolerance 

4: it NW 

max , it 
CG 
max � max. iterations Newton and CG 

5: 

6: for i = 0 , 1 , 2 , . . . , it NW 

max do � Newton iteration 

7: g (i ) = . . . � update internal parameters 

8: b (i ) = −D 

T 
W 

σ( e + D ̃  u (i ) , g (i ) ) � right-hand side 

9: C (i ) = 

∂ σ

∂ ε 
( e + D ̃  u (i ) ) � material tangent 

10: Assembly ( ̂  K 

ref 
(i ) 

) 
−1 

� Preconditioner assembly - Algorithm 2 

11: Solve for δ˜ u (i +1) with PCG : 

12: K (i ) δ˜ u (i +1) = b (i ) with preconditioner ( K 

ref 
(i ) 

) 
−1 

in it CG 
max steps 

13: or until the termination criterion of Eq. (20) is reached. 

14: ˜ u (i +1) = ̃  u (i ) + δ˜ u (i +1) � iterative update 

15: if 
∥∥δ˜ u (i +1) 

∥∥ ≤ ηNW 

∥∥˜ u (i +1) 

∥∥ then 

16: Proceed to line 19 � Newton’s method converged 

17: end if 

18: end for 

19: return ˜ u (i +1) 

 

 

 

 

 

 

 

 

 

of O( N I log N I ) complexity. 

Quadrature weights. Quadrature weights do not change through the process, so we fuse them with the transposition of 

the gradient operator 

D 

T 
W 

= D 

T W , 

where D 

T 
W 

: R 

d m 

N Q → R 

d N I can be interpreted as a weighted discrete divergence operator. 

5.2. Assembly of ̂ K 

ref 
(i ) 

It may be useful to reassemble the preconditioner with updated C 

ref 
(i ) 

, whenever C (i ) significantly changes with respect 

to the previous Newton step, with C (i −1) . However, the use of matrix-free operators D, D 

T 
W 

, F and F 

−1 prohibits the direct

assembly of ̂ K 

ref 
(i ) 

through matrices, like in (13) . Thus, we suggest an efficient algorithm for the assembly of ̂ K 

ref 
(i ) 

in analogy

to Leuschner and Fritzen [2] , that is outlined in Algorithm 2 . 

First, take a look at (block-periodic) ᾱβ̄-block K 

ref 
(i ) ᾱβ̄

∈ R 

N p ×N p of K 

ref 
(i ) 

∈ R 

d N n N p ×d N n N p . Thanks to the convolution theorem, 

the whole diagonal diag ( ̂  K 

ref 
(i ) ̄αβ̄

) ∈ R 

N p can be obtained by the FFT of any, say the first, row or, because of the symmetry,

column of K 

ref 
(i ) ᾱβ̄

, 

diag ( ̂  K 

ref 
(i ) ᾱβ̄ ) = F( K 

ref 
(i ) ᾱβ̄ [1 , :]) 

T = F( K 

ref 
(i ) ᾱβ̄ [: , 1]) 

where a colon indicates a complete column or row, see, e.g., Frazier [40] . Before the FFTs, we have to compute one column

K 

ref 
(i ) ᾱβ̄

[1 , :] for each of (d N n ) 
2 blocks K 

ref 
(i ) ᾱβ̄

of K 

ref 
(i ) 

. Consider a unit impulse vector i p ∈ R 

d N n N p that has only one non-zero

element equal to 1 on the pth position. When we apply K 

ref 
(i ) 

to vector i 1 , we obtain the first columns of d N n blocks K 

ref 
(i ) ̄α1 .

From the structure of K 

ref 
(i ) 

visible in (13) it is obvious that we need d N n vectors i p to obtain all (d N n ) 2 columns K 

ref 
(i ) ᾱβ̄

[1 , :] ,

where p = ( ̄β − 1) N p + 1 and β̄ ∈ { 1 , . . . , d N n } . The whole procedure is schematically shown in Fig. 4 . 

5.3. Pseudo-inverse of ̂ K 

ref 
(i ) 

Once we have all diagonal blocks ̂ K 

ref 
(i ) ̄αβ̄

, we may proceed to the computation of the pseudo-inverse of ̂ K 

ref 
(i ) 

. By a proper

row and column reordering, it can be seen that the pseudo-inverse of the block diagonal matrix ̂ K 

ref 
(i ) 

is equivalent to the

pseudo-inverse of N p (number of pixels/stencils) submatrices ⎡ ⎢ ⎣ 

̂ K 

ref 
(i ) 11 [ J, J] . . . ̂ K 

ref 
(i ) 1 ̄β

[ J, J] 

. . . 
. . . 

. . . ̂ K 

ref 
(i ) ̄α1 [ J, J] . . . ̂ K 

ref 
(i ) ̄αβ̄ [ J, J] 

⎤ ⎥ ⎦ 

−1 

∈ R 

d N n ×d N n , where J ∈ { 1 , . . . , N p } . (17) 
9 
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Algorithm 2 Pseudo-algorithm of reference material-based preconditioner assembly. 

1: Initialize: 

2: C 

ref 
(i ) 

� spatially uniform reference material 

3: 

4: for β̄ = 1 , . . . , d N n do � loop over d vectors 

5: p = ( ̄β − 1) N p + 1 � column index 

6: c 
β̄

= D 

T 
W 

C 

ref 
(i ) 
D i p � p-th column of K 

ref 
(i ) 

7: for ᾱ = 1 , . . . , d N n do 

8: diag ( ̂  K 

ref 
(i ) ̄αβ̄

) = F( c 
β̄

[( ̄α − 1) N p + 1 : ᾱN p ]) � assign to ̂ K 

ref 
(i ) ̄αβ̄

diagonals 

9: end for 

10: end for 

11: � pseudo-inverse of singular submatrix of ̂ K 

ref 
(i ) 

12: ( ̂  K 

ref 

(i ) ̄αβ̄ ) 
−1 

[1 , 1] = 

⎡ ⎢ ⎣ 

̂ K 

ref 
(i ) 11 [1 , 1] . . . ̂ K 

ref 
(i ) 1 ̄δ

[1 , 1] 

. 

. 

. 
. . . 

. 

. 

. ̂ K 

ref 
(i ) ̄γ 1 [1 , 1] . . . ̂ K 

ref 
(i ) ̄γ δ̄

[1 , 1] 

⎤ ⎥ ⎦ 

† 

ᾱβ̄

� 1-th block 

13: for J = 2 , . . . , N p do � inverse of remaining submatrices of ̂ K 

ref 
(i ) 

14: ( ̂  K 

ref 

(i ) ̄αβ̄ ) 
−1 

[ J, J] = 

⎡ ⎢ ⎣ 

̂ K 

ref 
(i ) 11 [ J, J] . . . ̂ K 

ref 
(i ) 1 ̄δ

[ J, J] 

. . 

. 
. . . 

. . 

. ̂ K 

ref 
(i ) ̄γ 1 [ J, J] . . . ̂ K 

ref 
(i ) ̄γ δ̄

[ J, J] 

⎤ ⎥ ⎦ 

−1 

ᾱβ̄

� J-th block 

15: end for 

Fig. 4. The schematic procedure for matrix-free assembly of ̂ K ref 
(i ) 

for d N n = 2 . First columns of blocks K ref 
(i ) 11 and K ref 

(i ) 21 are obtained as a result of the 

matrix-free action of K ref 
(i ) 

on the unit impulse vector i 1 . Diagonals diag ( ̂  K ref 
(i ) 11 ) and diag ( ̂  K ref 

(i ) 21 ) are then computed using d-dimensional FFT of K ref 
(i ) 11 [: , 1] 

and K ref 
(i ) 21 [: , 1] , respectively. By analogy, columns of blocks K ref 

(i ) 12 and K ref 
(i ) 22 are obtained by the matrix-free action of K ref 

(i ) 
on the unit impulse vector i p 

where p = (2 − 1) N p + 1 . 

 

 

 

 

The ( N p − 1) submatrices are of full rank and thus directly invertible. Only one submatrix, corresponding to the zero fre-

quency Fourier mode; this submatrix is singular and has to be treated separately. This block has exactly d null eigenvalues

corresponding to d rigid-body modes. We compute the (Moore–Penrose) pseudo-inverse of this block instead of its inver- 

sion. 6 The pseudo-inverse can be computed exactly by restriction onto the space orthogonal to the kernel of the singular 

block. For any specific type of FE and the corresponding discretization stencil, the kernel can be exactly identified. 

6. Comparison with related FFT-based schemes 

Several FFT-based computational homogenization schemes exist [14,15] . An interested reader may therefore find it useful 

to compare and place our approach in the context of contemporary literature. 

Recall that our approach is derived from the weak form of the mechanical equilibrium condition (2) with an unknown

displacement field. Equilibrium (2) is discretized in the standard Galerkin manner with the FE basis functions. The nonlinear 

nodal equilibrium (8) is linearized by Newton’s method, and the system of linear Eq. (9) is solved by the PCG method. For

the PCG method, a favorable convergence property is guaranteed by the reference material-based preconditioner (11) , whose 

fast application builds on FFT. 
6 Please note that the Moore–Penrose pseudo-inverse is depicted by † in Algorithm 2 . 

10 
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6.1. The connection with strain-based approaches 

Unlike DB FE, most spectral methods use strains (gradients) as unknown. SB approaches, like those in Zeman et al. [23] ,

Schneider et al. [28] , Leute et al. [29] , typically use the projection operator to enforce the compatibility of strain fields.

The connection between the DB and SB formulations has been discussed in Leuschner and Fritzen [2 , Section 3.3] and

of Schneider et al. [1 , Section 4.3]. In order for this paper to be self-contained, we explain the link between the DB and SB

formulation in our framework. Recall the preconditioned scheme (16) , 

( D 

T W C 

ref 
(i ) D ) −1 ︸ ︷︷ ︸ 

( K ref 
(i ) ) 

−1 

D 

T W C (i ) D ︸ ︷︷ ︸ 
K (i ) 

δ˜ u (i +1) = − ( D 

T W C 

ref 
(i ) D ) −1 ︸ ︷︷ ︸ 

( K ref 
(i ) ) 

−1 

D 

T W σ( e + D ̃  u (i ) , g (i ) ) ︸ ︷︷ ︸ 
−b (i ) 

, (18) 

where we omit the FFTs for simplicity. In the case of linear triangles or tetrahedral elements with a single quadrature point

per element, all quadrature weights w 

Q are equal. Then the multiplication by quadrature weights W can be left out in (18) ,

leading to 

( D 

T C 

ref 
(i ) D ) −1 ︸ ︷︷ ︸ 

( K ref 
(i ) ) 

−1 

D 

T C (i ) D ︸ ︷︷ ︸ 
K (i ) 

δ˜ u (i +1) = − ( D 

T C 

ref 
(i ) D ) −1 ︸ ︷︷ ︸ 

( K ref 
(i ) ) 

−1 

D 

T σ( e + D ̃  u (i ) , g (i ) ) ︸ ︷︷ ︸ 
−b (i ) 

. 

Next, we replace the iterated unknown ˜ u (i ) with its gradient ∂ ̃  u (i ) , recognizing that ∂ ̃  u (i ) = D ̃  u (i ) . After multiplying by D 

from the left-hand side, we finally obtain 

D ( D 

T C 

ref 
(i ) D ) −1 D 

T ︸ ︷︷ ︸ 
Γ0 

(i ) 

C (i ) δ∂ ̃  u (i +1) = − D ( D 

T C 

ref 
(i ) D ) −1 D 

T ︸ ︷︷ ︸ 
Γ0 

(i ) 

σ( e + ∂ ̃  u (i ) , g (i ) ) , (19) 

where Γ0 
(i ) : R 

d m 

N Q → R 

d m 

N Q stands for the discretized periodic Green’s operator. Leute et al. [29] showed that by setting

C 

ref 
(i ) 

= I s , Γ
0 
(i ) projects an arbitrary field from R 

d m 

N Q to its closest compatible part in the least square sense with respect to

the L 2 -norm. 

Therefore, this section demonstrates that schemes (18) and (19) are equivalent and generate equivalent solutions in every 

step of the CG in exact arithmetic. If the corresponding stopping criteria are used, CG yields the same approximate solu-

tions. Thus, DB and SB formulations converge equivalently, and the only decision-making argument is the efficiency of the 

implementation. 

6.2. The connection with FEM-FFT approaches 

To the best of our knowledge, our method is most similar to the linear hexahedral elements (FFT- Q 1 Hex) formulation

from Schneider at al. [1] and the Fourier-Accelerated Nodal Solver (FANS) from Leuschner and Fritzen [2] . The novelty of our

approach lies in the following: 

• The gradient operator. Similar to FFT- Q 1 Hex and FANS, the gradient field is derived with respect to the FE approximation.

However, we do not express the discrete gradient operator D in the Fourier space, but keep it in real space. The direct

convolution with a short gradient kernel is cheaper than the Fourier convolution via forward and inverse FFTs. We use 

the Fourier representation only for the efficient inverse of the preconditioner K 

ref 
(i ) 

as discussed in Section 4 . 

• Preconditioner and reference material. Our preconditioner (11) has the same form as the fundamental solution G 

0 con- 

tained in the discretized periodic Green’s operator Γ0 
(i ) of the FFT- Q 1 Hex scheme (equation (16) of [1] ), and the fun-

damental solution 

̂ φ in FANS (equation (49) of [2] ). Therefore we expect similar conditioning of all three schemes. We 

provide detailed insight from the perspective of linear algebra. The direct correspondence between the reference mate- 

rial C 

ref 
(i ) 

, material C (i ) ( x ) and the resulting eigenvalues renders the optimization of C 

ref 
(i ) 

more accessible. The closer the

reference material is to the real material of the sample, the better the conditioning of the discretized problem. 
• Discretization grid. Both FFT- Q 1 Hex and FANS were developed for bi/trilinear FE basis and quadrilateral/hexahedral ele- 

ments. Their authors mentioned their possible extension to more complex elements, which we present in this paper. In 

addition, the discretization grid in our method does not have to follow a pixel/voxel structure. We allow for an arbitrary

space-filling pattern of elements to be used; recall the patterns in Fig. 2 . Further extension of our formulation to FE with

higher-order polynomial basis functions is therefore straightforward. 
• Computational complexity. Computational complexity of FFT-based methods is governed by O(n log n ) complexity of the 

FFT. However, in our scheme, we compute two FFTs on d N n displacement fields of size N I , instead of d m 

strain fields

of size N Q in FFT- Q 1 . Because the number of strain components d m 

exceeds the number of displacement components

d N n per stencil and the number of quadrature points N Q exceeds the number of discretization nodes N I , our method has

smaller computational overhead than the DB methods that evaluate the gradient in the Fourier space and perform FFT 

on the strain-sized fields. For example, in the case of trilinear hexahedral FEs with 8 quadrature points per element, the
savings factor in the number of FFTs is 24. 
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Fig. 5. A linear heat transfer problem from Section 7.1 . The square periodic unit cell Y with a square inclusion (a). The flux field component q 1 (b) and 

q 2 (c) arising from average temperature gradient e = [ 0 . 01 , 0 . 0 ] 
T . Results were obtained with a one-node FE stencil ( N n = 1 ) with two linear triangular 

elements discretization and 815 nodes in both directions ( N I = 815 2 ). 

 

 

 

 

 

 

 

 

 

7. Numerical experiments 

In the previous sections, we explained the procedure for the problem of small-strain elasticity. However, the application 

range of this solution strategy is much broader. To highlight this versatility, we demonstrate the numerical behavior of 

the approach with examples of thermal conductivity, small-strain elasticity, and nonlinear finite-strain problems. The first 

example demonstrates the oscillation-free character of FE solutions. The second example illustrates the robustness of the 

approach with respect to material contrast and the effect of the reference material. The third one shows the equivalence 

of the SB and DB implementations. We compare the (fully- and under-integrated) FE schemes, described in the previous 

sections, with the (under-integrated) Fourier–Galerkin method taken from Vond ̌rejc et al. [20] , Zeman et al. [23] , de Geus

et al. [24] . Units employed in all examples are consistent. 

Our results were obtained using μSpectre software, an open source platform for efficient FFT-based continuum mesoscale 

modeling, which is freely available at https://gitlab.com/muspectre/muspectre . The software package includes the examples 

which are described in the following sections. 

Termination criteria To obtain comparable results, we have to choose the corresponding termination criteria for both SB 

and DB schemes. Newton’s method stops when the relative norm of the strain increment drops below the tolerance ηNW ,∥∥δ∂ ̃  u (i +1) 

∥∥ ≤ ηNW 

∥∥∂ ̃  u (i +1) 

∥∥, in analogy to Zeman et al. [23] , de Geus et al. [24] . 7 The PCG solver is stopped when the relative

( K 

ref 
(i ) 

) 
−1 

-norm of the residual drops below the tolerance ηCG , ∥∥r k (i +1) 

∥∥
( K ref 

(i ) ) 
−1 ≤ ηCG 

∥∥r 0 (i +1) 

∥∥
( K ref 

(i ) ) 
−1 . (20) 

This choice is motivated by the optimal property of PCG to minimize the error energy norm ∥∥e k (i +1) 

∥∥
K (i ) 

= 

∥∥δ˜ u (i +1) − δ˜ u k (i +1) 

∥∥
K (i ) 

, 

where δ˜ u k (i +1) is the approximation of the solution δ˜ u (i +1) in k th PCG step. If ( K 

ref 
(i ) 

) 
−1 

K (i ) ≈ I , then the ( K 

ref 
(i ) 

) 
−1 

-norm of the

residual r k 
(i +1) 

= b (i ) − K (i ) δ˜ u k (i +1) approximates the error energy norm, ∥∥r k (i +1) 

∥∥
( K ref 

(i ) ) 
−1 = e k (i +1) 

T 
K 

T 
(i ) ( K 

ref 
(i ) ) 

−1 
K (i ) e 

k 
(i +1) 

T = 

∥∥e k (i +1) 

∥∥
K T (i ) ( K 

ref 
(i ) ) 

−1 
K (i ) 

. 

Additionally, the ( K 

ref 
(i ) 

) 
−1 

-norm of the residual naturally appears in the PCG algorithm, therefore it can be freely obtained. 

7.1. Linear steady-state thermal conduction problem 

In the first example, we demonstrate the oscillation-free character of gradient fields arising from FE discretization. For 

this purpose, we reconstruct the benchmark problem from Leuschner and Fritzen [2 , Section 3.7.1] or Brisard and Dormieux

[17 , Section 3.2], where the Fourier–Galerkin methods exhibit significant discretization artifacts. 

We consider a scalar problem of linear heat transfer, where we look for the flux field q satisfying the weak balance condi-

tion (A.1) ; see Appendix A for more details. The microstructure is defined by the square periodic unit cell Y , as sketched on

the left-hand side of Fig. 5 . The composite microstructure consists of an insulating matrix with the conductivity A 

mat = 100 I ,

and a conducting inclusion with the conductivity A 

inc = 100 A 

mat . An average temperature gradient e = [ 0 . 01 , 0 . 0 ] 
T is applied. 

The number of pixels is 815 2 , and the material coefficients are constant per pixel. The choice of reference material A 

ref has
7 Please note that other stopping criterion for Newton’s method, such as the divergence norm [44] , are also possible. However, in the SB implementation, 

we have direct access only to the strains and stresses. Therefore, we choose the relative norm of the strain increment. 
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Fig. 6. Local heat flux field components q 1 (1) and q 2 (2) from the experiment descibed in Section 7.1 , obtained with the under-integrated Fourier–Galerkin 

method is shown in column (a), a one-node FE stencil ( N n = 1 ) with two linear triangular elements and two quadrature points is shown in column (b), a 

one-node FE stencil ( N n = 1 ) with one bilinear rectangular element and four quadrature points is shown in column (c) and a one-node FE stencil ( N n = 1 ) 

with one bilinear rectangular element and one quadrature point is shown in column (d). 

 

 

 

 

 

 

 

 

 

 

 

 

no effect on the discretization artifacts; thus, we set A 

ref = I for simplicity. Components of the global flux field q are shown

in Fig. 5 ; q 1 in the middle and q 2 on the right-hand side. The regions of details depicted in Figs. 6 and 7 are highlighted by

the black rectangles in Fig. 5 . 

In Fig. 6 , we show the details of heat fluxes for various discretizations: the Fourier–Galerkin method in column (a), the

one-node FE stencil ( N n = 1 ) with two linear triangular elements and two quadrature points ( Fig. 2 (b)) in column (b), the

one-node FE stencil ( N n = 1 ) with one bilinear rectangular element and four quadrature points ( Fig. 2 (a)) in column (c) and

the one-node FE stencil ( N n = 1 ) with one bilinear rectangular element and one quadrature point in column (d). 

The Fourier–Galerkin method exhibits strong oscillations through the region. The under-integrated FE solution shows 

checkerboard patterns, while FE solutions of fully-integrated schemes are devoid of oscillations in the interior of the domains 

occupied by a single phase because the discretization discrepancies remain confined to the vicinity of the phase boundaries. 

For instance, triangular discretizations reduce the phase boundary discretization artifacts to the two pixel-wide layer around 

the phase boundary. 

The zigzag patterns on the phase boundary arise from the pixel-based geometry. If the elements can capture the interface 

of the two phases exactly, we do not get any discretization artifacts, as can be seen in Figs. 6 and 7 in column (b). This

speaks in favor of using FE over Fourier–Galerkin discretization. 

7.2. Small-strain elasticity problem 

The second example focuses on the effect of the preconditioner on the number of PCG iterations with respect to the

number of discretization nodes N I and phase contrast ρ . For this purpose, we use Hashin’s coated sphere construction 

adapted from Schneider et al. [28 , Section 4.1] and the references therein. 

We choose the linear small-strain elastic problem described in Section 2 . The three-phase microstructure represent- 

ing a coated sphere in the matrix with effective material properties is depicted in Fig. 8 , with a core radius r 1 = 0 . 2 ,

annulus-shaped coating outer radius r 2 = 0 . 4 , and a cubic domain edge length l = 1 . An average macroscopic strain e =
[ 1 , 0 , 0 , 0 , 0 , 0 ] 

T is applied. We assume isotropic phases with bulk and shear moduli K 1 , G 1 in the core, K 2 , G 2 in the coating

and K eff, G eff in the surrounding matrix. The bulk moduli K 1 , K 2 are chosen in a way that the resulting response of the unit

cell is equivalent to the response of a homogeneous material with K eff. As a consequence, the bulk moduli K 1 , K 2 must be

balanced for the particular phase contrast ρ = K / K . 
2 1 
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Fig. 7. Local temperature gradient field components ∇ ̃  w 1 (1) and ∇ ̃  w 2 (2) from experiment Section 7.1 , obtained with the under-integrated Fourier–

Galerkin method, is shown in column (a), a one-node FE stencil ( N n = 1 ) with two linear triangular elements and two quadrature points is shown in 

column (b), a one-node FE stencil ( N n = 1 ) with one bilinear rectangular element and four quadrature points is shown in column (c) and a one-node FE 

stencil ( N n = 1 ) with one bilinear rectangular element and one quadrature point is shown in column (d). 

Fig. 8. Two-dimensional sections at x 1 = 0 . 5 of the 3-dimensional cubic periodic unit cell Y with a coated sphere inclusion. Radii r 1 = 0 . 2 , r 2 = 0 . 4 with a 

domain size l = 1 . Components of the local stress fields σαα for trilinear FE discretization with eight quadrature points (left column), trilinear FE discretiza- 

tion with one quadrature point (middle column) and Fourier–Galerkin discretization (right column) with the number discretization nodes N I = 65 3 . 

14 
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Fig. 9. The number of PCG iterations for trilinear FE discretization for different phase contrasts ρ and number of discretization nodes N I . Termination 

parameter for linear solver ηCG = 10 −6 . 

 

 

 

 

 

 

 

 

 

 

 

 

First, in accordance with Schneider et al. [28 , Section 4.1.3], we set ρ = 10 3 and the remaining parameters to 

K 1 
. = 0 . 001320 60 , K 2 

. = 1 . 320 6033 , K eff
. = 1 . 0 , 

G 1 
. = 0 . 0 0 079236 , G 2 

. = 0 . 7923620 , G eff
. = 0 . 6 . 

Two-dimensional sections at x 1 = 0 . 5 of global stress field components are shown in Fig. 8 right. Fully-integrated trilinear

FE discretization (left column in Fig. 8 ) generates oscillation-free results, unlike under-integrated trilinear FE discretization 

(middle column in Fig. 8 ), and Fourier–Galerkin discretization (right column in Fig. 8 ). 

Second, we are interested in how our preconditioned scheme behaves with respect to the number of discretization nodes 

N I and varying phase contrast ρ . The convergence of PCG depends on the choice of the reference material C 

ref . We compare

two cases: the first C 

ref 
I s 

= I s , with I s ∈ R 

d m 

×d m being the symmetrized identity tensor ( I s ) αβικ = 

1 
2 (δαιδβκ + δακδβι) in the

Mandel notation, and secondly C 

ref 
mean = 

1 
|Y| 
∑ N Q 

Q=1 
C ( x Q q ) w 

Q , where C 

ref 
mean is the mean stiffness matrices over Y . 

The preconditioner with mean reference material C 

ref 
mean exhibits better performance in all studied cases, see Fig. 9 . The

numbers of iterations slowly increases as N I grows, until the number of iterations stabilizes for sufficiently fine discretiza- 

tions. In addition, C 

ref 
mean significantly reduced the phase contrast sensibility, especially for ρ > 1 (softer sphere core). 

7.3. Finite-strain elasto-plastic problem 

The purpose of the last example is two-fold. First, we demonstrate the applicability of the approach to real-world prob- 

lems in the finite-strain setting and the effect of nonphysical oscillations on the results. Second, we point out the equiv-

alence of the DB FE scheme to the SB FE scheme with the projection operator recently proposed by Leute et al. [29] . The

equivalence of these two approaches is briefly explained later in Section 6.1 . 

For this purpose, we adapt the example from Section 5.5 of de Geus et al. [24] . This example studies a sample of

dual-phase steel obtained using a scanning electron microscope. Responses of the material phases are elastic and homo- 

geneous in the elastic part of deformation with Young’s moduli E = 200 GPa and Poisson’s ratios ν = 0 . 3 , and differ in the

parameters of linear hardening in the plastic regions, see de Geus et al. [24 , Section 5] for more details about the material

model. 

The yield stress τy evolves with respect to plastic strain ε p , initial yield stresses τ hard 
y 0 

, and hardening moduli H 

hard 
0 

such

that τy = τy 0 + Hε p . We set these parameters to 

τ hard 
y 0 = 2 τ soft 

y 0 = 0 . 003 E, and H 

hard 
0 = 2 H 

soft 
0 = 0 . 01 E. 

Total macroscopic deformation gradient is applied in 5 load increments: 

F = 

√ 

3 

2 

[
0 . 995 0 

0 −0 . 995 

]
. (21) 

We solved this problem with the following schemes: an under-integrated SB Fourier–Galerkin scheme with the Fourier 

projection operator from [23,24] , an SB scheme with two linear triangular FEs and the FE projection operator from Leute

et al. [29] , a DB FE scheme with two linear triangular FEs, and a DB FE scheme with one bilinear rectangular FE. We set the
15 
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Fig. 10. Global plastic strains ε p in dual-phase steel with applied deformation gradient (21) in row (1) with local details in row (2) . Row (3) shows 

accompanying normalized shear stresses P 12 in the detailed area. Discretization schemes in columns: (a) the standard SB scheme with a Fourier projection 

operator, (b) the SB scheme with an FE projection operator with two linear triangular elements, (c) the DB FE scheme with two linear triangular elements, 

and (d) the DB FE scheme with one bilinear rectangular elements. All quantities are averaged per pixel. 

Table 1 

The number of Newton’s method steps and the total number of PCG steps required to solve the finite-strain elasto-plastic problem of 

Section 7.3 for three selected reference materials, with Newton tolerance ηNW = 10 −5 and PCG tolerance ηCG = 10 −5 . Discretization approaches 

from left to right: the under-integrated SB Fourier–Galerkin scheme with Fourier projection operator, the fully-integrated SB scheme with FE 

projection operator with two linear triangular elements, the fully-integrated DB FE scheme with two linear triangular elements, the fully- 

integrated DB FE scheme with one bilinear rectangular element, and the under-integrated DB FE scheme with one bilinear rectangular ele- 

ment per pixel. Numbers in boldface highlight the equivalence of our DB FE scheme and the SB FE scheme presented by Leute et al. [29] . 

Strain-based (SB) Displacement-based (DB) 

C ref 

Under-integrated 

Fourier projection 

Fully-integrated linear 

FE projection 

Fully-integrated 

linear FE 

Fully-integrated 

bilinear FE 

Under-integrated 

bilinear FE 

Newton steps 11 9 9 10 11 

I 1012 861 861 761 1014 

PCG steps I s 781 609 609 540 779 

C ref 
mean 585 457 457 407 586 

 

 

 

 

 

Newton tolerance to ηNW = 10 −5 and PCG tolerance to ηCG = 10 −5 . We solved three cases with identity C 

ref = I , symmetrized

identity C 

ref = I s and mean value C 

ref = C 

ref 
mean reference materials, in analogy to Section 7.2 . 

First, the distributions of global plastic strain ε p obtained for these four approaches are shown in the first row of Fig. 10 .

The regions of details (the second row) uncover the checkerboard patterns in the plastic strain fields of the under-integrated 

SB Fourier–Galerkin solution (a.2) that are a direct consequence of the oscillating stress field (a.3). The other three schemes, 

columns (b) to (d), produce solutions without oscillations. 

Second, the number of Newton’s method steps and the total number of PCG iterations needed to solve the problem with

these four approaches are shown in Table 1 . The table highlights the equivalence of our DB scheme and the SB scheme pre-

sented by Leute et al. [29] , if equivalent discretizations are used. Additionally, Table 1 shows that under-integrated schemes

exhibit worse convergence compared to fully-integrated variants. 
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8. Conclusions 

In this paper, we presented a novel and geometrically optimal approach for computational homogenization of nonlinear 

micromechanical and thermal problems in periodic media. Efficiency was achieved due to a clever interplay between the 

PCG solver and the geometry and physical properties of the problem [45] . Standard FE discretization on a regular grid was

coupled with Newton’s method to handle the nonlinear system iteratively. The linearized system was solved using the PCG 

method, which was enhanced with a preconditioner based on a discretized inverse (Green’s) operator for a problem with 

data from a spatially uniform reference material. The proposed method exhibited excellent convergence properties because 

the number of linear solver iterations was bounded (independent of the number of discretization nodes) and showed mild 

phase-contrast sensitivity. Our main findings are summarized as follows: 

• The condition number associated with the preconditioned linear system decreased as the data for the reference material 

approached the data for the material. Two-sided bounds for all eigenvalues of the preconditioned linear system were 

easily accessible, and thus provided valuable insight into the choice of reference material. 
• The complexity of computation was governed by the FFT algorithm applied to the displacement field. The preconditioning 

operator was, in terms of computation, cheaply inverted and applied in Fourier space, while the gradient was evaluated 

through the convolution with a short kernel in real space. 
• The FE bases produced oscillation-free stress and strain solution fields with marginal discretization artifacts at the phase 

interfaces. Additional variability of discretization patterns facilitated a reduction in mesh anisotropy and a more accurate 

representation of the geometry and the solution. 

We consider this approach optimal because of the following reasons: 

• The fully-integrated Galerkin approach provides the optimal approximation for the solution from the approximation sub- 

space and minimizes the energy norm of the error. The energy norm of the error is equivalent to the error in homoge-

nized properties; see Vond ̌rejc and de Geus [46] . 
• For symmetric positive definite algorithmic tangents, the CG solver minimizes the energy norm of the error and provides 

the optimal approximation in every iteration. 
• Using the stopping criterion for CG that estimates the energy norm of error is optimal. 
• The Green’s function preconditioner makes the CG iteration count independent of the size of the linear system. This 

geometrically-optimal preconditioner (recall Section 4.3 ) is inexpensive and applicable at O(n log (n )) complexity. In ad- 

dition, an appropriate choice of the reference material can further improve its efficiency. 

In addition, the Galerkin nature of the FE method connected with the minimization of the related energy functional 

allows us to use a well-built theory based on the FE method for error estimation, convergence analysis, and other useful

analyses. 

The major disadvantage of a fully-integrated FE scheme is its significant computational memory consumption, especially 

in 3D, when a single voxel requires at least 5 quadrature points (5 linear tetrahedral FEs). This significantly increases mem-

ory use and costs of constitutive model evaluations compared to single-quadrature point schemes. Our formulation allows 

use of the under-integrated FE as well; however, using this kind of FE leads to lower quality solutions. To obtain locally

accurate solutions that are necessary for problems with localized deformations (e.g., damage or plasticity problems), fully- 

integrated schemes appear, to the best of our knowledge, to be necessary at present. 8 

In the future, the extension of the equivalence of DB and SB schemes to a general reference material and the fusion of

Vond ̌rejc et al.’s [48] low-rank tensor approximation technique with our FE scheme will be the areas in which we will focus

our investigations. 
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Thermal conduction The proposed preconditioned FE method can also be used for potential problems investigating ther- 

mal conduction or electrostatics. From a mathematical viewpoint, these problems are described by a scalar elliptic partial 

differential equation. 

For the scalar thermal conduction problem, we split the overall temperature gradient ∇w : Y → R 

d into an average tem-

perature gradient e = 

1 
|Y| 
∫ 
Y ∇ w ( x ) d x ∈ R 

d and a periodically fluctuating field ∇ ˜ w : Y → R 

d 

∇w = e + ∇ 

˜ w for all x ∈ Y. 

Here, ∇ ˜ w denotes the temperature gradient, and the fluctuating temperature field ˜ w belongs to the space of admissible 

functions V = { ̃ v : Y → R , ˜ v is Y -periodic } . The governing equation for ∇ ˜ w follows from the thermal equilibrium condition 

−∇ · q ( x , e + ∇ 

˜ w ( x )) = 0 for all x ∈ Y, 

in which q : Y × R 

d × R 

q → R 

d is the flux field. As usual, the equilibrium equation is converted to the weak form ∫ 
Y 
∇ ̃

 v ( x ) T q ( x , e + ∇ 

˜ w ( x )) d x = 0 for all ˜ v ∈ V (A.1) 

that serves as the starting point for the FE method. Following the discretization scheme described in Section 3 , the lin-

earization in Section 3.1 and preconditioning in Section 4 leads to a well-conditioned linear system 

F H ( F D 

T W A 

ref 
(i ) D F H ) −1 F ︸ ︷︷ ︸ 

( K ref 
(i ) ) 

−1 

D 

T W A (i ) D ︸ ︷︷ ︸ 
K (i ) 

δ˜ w (i +1) = F H ( F D 

T W A 

ref 
(i ) D F H ) −1 F ︸ ︷︷ ︸ 

( K ref 
(i ) ) 

−1 

D 

T W q ( e + D ̃  w (i ) ) ︸ ︷︷ ︸ 
−b (i ) 

, (A.2) 

for a finite Newton’s method increment δ˜ w (i +1) . Material data matrix A (i ) ∈ R 

d N Q ×d N Q stores values of conductivity tangent 

matrix A (i ) ( x ) = 

∂ q 

∂∇ ˜ w 

( x , e + ∇ ˜ w ( x )) ∈ R 

d×d in (i ) th Newton’s method step, and A 

ref 
(i ) 

∈ R 

d N Q ×d N Q comes from spatially uni-

form material data A 

ref 
(i ) 

∈ R 

d×d . Another small difference lies in the form of the gradient matrix D , 

∇ ̃  w = D ̃  w = 

[
D 1 

D 2 

][
˜ w 

]
. (A.3) 

Here, the entries are the same as in the elasticity problem; recall Eq. (5) . 
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