
The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

Entropic stress of grafted polymer chains
in shear flow

Cite as: J. Chem. Phys. 159, 094902 (2023); doi: 10.1063/5.0158245
Submitted: 16 May 2023 • Accepted: 14 August 2023 •
Published Online: 5 September 2023

Jan Mees,1,2 Thomas C. O’Connor,3 and Lars Pastewka1,2,a)

AFFILIATIONS
1 Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, Freiburg 79110, Germany
2Cluster of Excellence LivMatS, Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg,
Georges-Köhler-Allee 105, Freiburg 79110, Germany

3Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

Note: This paper is part of the JCP Special Topic on Adhesion and Friction.
a)Author to whom correspondence should be addressed: lars.pastewka@imtek.uni-freiburg.de

ABSTRACT
We analyze the shear response of grafted polymer chains in shear flow via coarse-grained molecular dynamics simulations with an explicit
solvent. We find that the solvent flow penetrates into almost the whole brush for “mushroom”-type brushes but only a few bond distances for
dense brushes. In all cases, the external stress on the wall equals the entropic stress associated with the distorted polymer conformations. We
find that the external stress increases linearly with shear rate at low rates and sublinearly at high rates. The transition from linear to sublinear
scaling occurs where chains react to flow by reorienting. Sublinear scaling with shear rate disappears if the shear rate is nondimensionalized
with the effective relaxation time of chain subsegments located in the outer part of the brush that experiences flow.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0158245

I. INTRODUCTION

Polymer brushes are systems of surface-grafted polymer chains.
They have been used in various applications, such as stabilizing
colloidal suspensions,1–3 anti-fouling coatings,4,5 and adjusting sur-
face interactions and wetting behavior.6 They naturally occur on the
interface of complex biological or bio-inspired systems, such as car-
tilage7 or hydrogels,8–17 and are known for their excellent lubricating
properties.18–20

In this paper, we apply molecular simulations to study the rela-
tion between interfacial shear stress and polymer conformation in
brushes exposed to solvent flow. We model systems of grafted chains
with varying chain length and grafting density [see Figs. 1(a) and
1(b)] and analyze their microscopic response to shear flow. We
explore the polymer’s role by computing the contribution of the
conformational entropy to the shear stress in the nonequilibrium
chain-conformations imposed by the external flow.21,22

Prior simulation studies on grafted polymer chains discussed
polymer conformations during flow,23–29 but those studies did not
discuss mechanical stresses in the system and focused on high

grafting density. Here, we explicitly analyze stresses with the goal
to connect polymer conformation to external drivers, as in fric-
tional contacts. We also include brushes with low grafting density,
such as those encountered on the surfaces of hydrogels,15–17 in the
hope that our work contributes to the ongoing debate on the roles
of solvent hydrodynamics and nonequilibrium polymer conforma-
tions in the tribology of those systems.10–17 Our work is hence most
representative of a sliding polymeric system in a hydrodynamic
regime.

Equilibrium chain conformations depend on grafting den-
sity. At low grafting densities, in what is called the “mushroom”
regime, the chains do not interact with each other. With increasing
grafting density Γ, the chains start to overlap and adopt increas-
ingly straight, brush-like conformations due to excluded volume
effects.19 The transition between both regimes occurs at Γ ≈ Γ � , with
Γ � = 1�(πR2

g), where Rg is the radius of gyration of the individual
chain inside the brush.

When exposed to shear flow, the solvent’s velocity gradient
penetrates a certain distance into the brush before it is screened
out.30 This momentum transport into the brush reorients and elon-
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FIG. 1. (a) Polymer chains with 60 beads/chain and grafting density Γ = 10−2 σ−2 at sliding speed v = 5 × 10−2 στ−1. (b) Only two rows of grafted chains are depicted for
clarity. Each chain has a different color to ease visibility. (c) The solvent’s velocity profile in the shear direction is used to determine the effective shear rate γ̇, here shown
for a system with N = 60 beads/chain at grafting densities Γ = 10−2 σ−2 (green) and 10−1 σ−2 (orange). The dashed lines represent the fits. (d) Polymer density distribution
as a function of height for the same systems. The hydrodynamic-penetration length λ is determined as the difference of brush height H and L �

h . (e) and (f) show the height
dependency of the local shear rate γ̇(z) = �v��z.

gates chains in the direction of shear.23–29 As a result, a grafted
polymer chain in shear flow is subject to three forces: an osmotic
force due to the gradient in polymer concentration across the inter-
face, a shear force due to the solvent’s shear flow, and a restoring
force due to conformational entropy.31 Studies have shown that
the competition between these forces in nonlinear flows can drive
chains to split into two coexisting populations, with one population
elongating in flow, while the other remains unperturbed within the
brush.29,32–34

Several theoretical models have been proposed for polymer
brushes exposed to shear flow.31–33,35–37 The model in a study by
Clément et al.33 builds on the fact that shear flow only penetrates
over the hydrodynamic-penetration length λ into the brush. The
system’s steady-state shear response is determined by the competi-
tion between the shear rate γ̇ and the relaxation time τr of the chains’
outermost “blobs” of size ξ. Assuming that within each blob, the
chain segments follow Zimm dynamics,32,33,37 the relaxation time is
given by38

τr ≈ ηsξ3�kBT, (1)

where ξ3 is the correlation volume and ηs is the solvent viscosity.
For a single chain in a good solvent, ξ is the radius of gyration
Rg of the chain.21 It is often implicitly assumed33,37 that the size
of the outermost blob that reacts to shear flow corresponds to the
hydrodynamic-penetration length, i.e., ξ ∼ λ. If this is the case, then
the system’s response can be characterized by the Weissenberg num-
ber Wi = γ̇τr with τr obtained from Eq. (1) for a blob size that is
proportional to λ.

Experiments commonly do not have access to λ and, there-
fore, τr. The Weissenberg number Wi � = γ̇τ �

r is then defined with
respect to the equilibrium relaxation time of the full free chain,
τ �

r .11,12,39–41 The key question that we are trying to answer is what
the consequences of this approximation are for the observation of
macroscopic properties, in particular the shear stress. Our results
confirm that only the part of the brush with height λ actually exposed
to solvent shear determines the brush’s shear response. The value of

λ varies with shear rate and grafting density, information that is not
experimentally accessible. This implies that the rate-dependence of
macroscopic properties, such as the external stress, will depend on
how Wi is defined. In the regime where chains elongate, the external
stress appears to depend sublinearly on Wi only if a shear-rate-
independent relaxation time, such as an equilibrium relaxation time,
is used to compute the Weissenberg number, as is typical for exper-
iments measuring friction in self-mated hydrogels and polymer
brushes.11,12,39,41

II. THEORY
The stress in a polymer solution is comprised of contribu-

tions from the solvent’s viscous dissipation, hydrostatic pressure,
and polymer entropy. The stress tensor is often modeled as21

σαβ = ηs�καβ + κβα� − pδαβ + ρ
n
� fαrβ�, (2)

where α and β denote the Cartesian coordinates. The solvent’s vis-
cous dissipation yields a contribution ηs(καβ + κβα), where καβ is the
local shear rate. The hydrostatic pressure’s contribution is −pδαβ,
with pressure p and Kronecker delta δαβ. �⋅� represents the ensemble
average. Finally, the polymer’s contribution to the stress tensor is

σentr
αβ = ρ� fαrβ��n, (3)

where ρ is the polymer’s number density and n is the number of
bonds per chain. The force �f is the sum of non-hydrodynamic forces
acting on a given chain, and �r is the chain’s end-to-end distance
vector.

We can now insert into Eq. (3) the equation for the
non-linear, entropic force of a freely jointed polymer chain ��f �= kBTL−1(h)�lk,22 in which lk is the Kuhn length, L−1 is the inverse
Langevin function,38 and h = ��r��nb is the extension ratio with a
bond length b. The extension ratio is proportional to n−1/2 for an
ideal, Gaussian chain and unity for a fully extended chain. The Kuhn
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length is defined as lk = C∞b, in which C∞ is Flory’s characteristic
ratio. We note that this is an approximation for the systems that we
are studying, as it assumes that each chain is under uniform tension
which is not the case in most real environments. However, past sim-
ulation work has shown that this approximation works well (see, for
example, Ref. 22).

From Eq. (3), we obtain

σentr
αβ = ρ(γ̇)kBT

C∞ �L−1(h)h r̂α r̂β�, (4)

where r̂α are the components of the unit vector �r�r of the end-to-
end distance. Flory’s characteristic ratio is C∞ = 1.7 for our system
(see the Appendix for further details). The number density is
given by ρ = Nm�V , where Nm is the number of monomers and
V = LxLyH(γ̇) is the volume occupied by the grafted chains, with
H being the brush’s height. The number density is shear rate-
dependent because at higher shear rates, the chains tilt and stretch,
changing the volume.

This derivation ignores changes to the chain’s internal energy
that might arise at large extensions and, hence, only captures the
effects of changes in configurational entropy, which is usually the
dominant source of stress in shearing flows. For the purpose of
clarity and brevity, we henceforth call the polymer’s contribution
to the stress tensor the entropic stress σentr

αβ . Two different molec-
ular effects go into the entropic stress. First, the hardening factor
L−1(h)h captures the mechanical effect of chain elongation. Sec-
ond, the orientation factor r̂α r̂β captures the alignment of polymer
chains.

III. METHODS
Our molecular system, depicted in Figs. 1(a) and 1(b), consists

of polymer chains bonded to a face-centered cubic wall with a lat-
tice spacing of 1.2 σ and the [111] crystallographic direction facing
the interface. The chains are bonded to the exposed wall beads fol-
lowing a hexagonal pattern with grafting density Γ. The polymers
are described by a coarse-grained bead-spring model42 in which
the excluded volume is modeled by a Lennard-Jones (LJ) poten-
tial with interaction energy ε = 1.0, length σ = 1.0, and cutoff radius
rcut = 1.6 σ. The masses are set to unity so that the time scale of the
simulation is given by τ = σ(m�ε)1/2. Consecutive monomers (poly-
mer beads) are connected by a nonlinear FENE bond with spring
constant k = 30.0 εσ−2 and maximum extension R0 = 1.5 σ.42,43 The
cutoff radius of the LJ interaction of bonded monomers is set
to rcut = 21/6 σ, making the LJ interaction purely repulsive. The
monomers interact with wall beads via an LJ interaction with ε = 0.6,
σ = 1.3, and rcut = 1.6 σ. The monomers are bonded to the bottom
wall via FENE bonds with spring constant k = 30.0 εσ−2 and max-
imum extension R0 = 2.1 σ. The LJ interaction energy between the
first bead near the wall and the wall is ε = 0.8 with length σ = 1.5
and cutoff radius rcut = 21/6 σ. The top wall does not interact with
the polymer chains and only serves to impose a shear flow on the
solvent.

We explicitly model a dimer solvent made of chains of length
N = 2.44,45 This type of explicit solvent inhibits layering effects at the
walls and permits a larger time step than a monomer solvent.39 The
dimers are connected by FENE bonds with k = 30.0 εσ−2 and max-
imum extension R0 = 1.3 σ. The LJ parameters are ε = 0.8, σ = 0.8,

and rcut = 21/6 σ. The non-bonded dimers interact via an LJ poten-
tial with parameters ε = 0.5, σ = 1.0, and rcut = 2.5 σ. The parameters
for dimer–polymer interactions are set to ε = 1.2, σ = 1.0, and rcut= 2.5 σ. Finally, the dimers interact with the wall with ε = 0.6,
σ = 1.0, and rcut = 2.5 σ. The aforementioned parameters are iden-
tical to the parameters used in a study by de Beer and Müser46 to
induce good-solvent conditions. The combined polymer and sol-
vent system is simulated at a fixed surface concentration of 0.8
beads σ−3. A downward pressure of 5 × 10−4mσ−1τ−2 acts on the
top wall (which has no grafted polymer chains), slightly compressing
the system. A representative system has the dimensions Lx = 100 σ,
Ly = 87 σ, and Lz = 64 σ and contains 465 632 beads.

We use a DPD thermostat with friction coefficient γ = 5mτ−1

and cutoff rc = 21/6 σ to thermalize the solvent and the polymers to a
temperature of kBT = 0.6 ε,47,48 where kB is the Boltzmann constant.
The top wall is moved at constant sliding speed v along the x axis
in order to induce a shear flow in the solvent. We use a time step of
�t = 5 × 10−3τ in our simulations.

IV. RESULTS
A. Hydrodynamic penetration

We start by analyzing the penetration of solvent flow into the
polymer brush. Between the brush and outer wall [see Fig. 1(c)], we
find an ideal Couette flow with a velocity profile of the solvent that is
linear in channel position. The solvent is sheared at a rate γ̇ = v�Lh,
where Lh is the height of the solvent’s Couette region. Note that for
the definition of Lh, we extrapolate the linear Couette region into
the brush toward the point where the velocity becomes zero. We use
two different approaches to compute γ̇ and Lh: while we determine
γ̇ from our simulations directly at high velocities, the shear rates
obtained at low sliding velocities are dominated by thermal fluctu-
ations. For sliding speeds v < v′, we compute γ̇ by assuming that
Lh does not change from its value at v′ = 5 × 10−3 στ−1.

Within the brush, hydrodynamic interactions are screened by
the polymer chains—in other words, the flow velocity of the solvent
vanishes inside the bulk of the brush. Given the overall simulation
cell of height Lh + L �

h [see Fig. 1(c)], we obtain L �
h as the height

of the quiescent part of the brush. Comparing the quiescent height
L �

h with the actual height H of the brush yields the hydrodynamic-
penetration length λ = H − L �

h . We compute the brush height
H from the position at which the density has decayed to 1% of its
maximum value [see Fig. 1(d) and Ref. 49].

The influence of the grafting density on hydrodynamic penetra-
tion can be qualitatively observed in the logarithmic depiction of the
shear rate [Figs. 1(e) and 1(f)]. For systems with N = 60 beads�chain,
the grafting density at which the chains begin to overlap is
Γ∗ = 1�(πR2

g) ≈ 9 ⋅ 10−3 σ−2. For Γ = 10−2σ−2 ≈ Γ � , the shear rate
gradually increases to its maximum value in the Couette region,
while the transition is much sharper for the denser system with
Γ = 10−1 σ−2 > Γ � .

For a more quantitative analysis, we plot in Fig. 2(a) the
hydrodynamic-penetration length λ as a function of shear rate
γ̇ for three grafting densities Γ. While for our densest system, λ is
independent of shear rate over the range of rates, λ decreases at
high shear rates for semi-dilute and dilute systems. However, for
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FIG. 2. (a) Hydrodynamic-penetration length λ as a function of shear rate γ̇ for
systems with 60 beads/chain and varying grafting density Γ. (b) λ normalized by
the shear rate-dependent brush height H. The inset shows the average values as
a function of grafting density.

all systems and shear rates, the hydrodynamic-penetration length λ
is proportional to the brush height H. Figure 2(b) shows the nor-
malized hydrodynamic-penetration length, λ�H. The dependence
on shear rate disappears for λ�H, showing that the change in pen-
etration length with shear rate of Fig. 2(a) is simply because the
chains tilt and, hence, the brush shrinks at high shear rates. In other
words, the number (or mass) of monomers in the region where
shear flow penetrates is constant. For the lowest grafting densities
with Γ� Γ � , the solvent flow extends almost throughout the whole
brush, while at Γ� Γ � , the flow is unable to penetrate the brush
significantly.

B. Shear stress
Solvent flow in our system is driven by a non-zero shear stress

at the wall boundaries. Our simulation geometry consists of two
parallel plates with an entrained molecular system and is mechani-
cally extremely simple: Mechanical equilibrium means that the shear
stress σxz is constant along the simulation cell’s height (because
@σxz�@z = 0). It follows that the external shear stress measured from
the constraint forces of our rigid walls σwall

xz is equal to the Newtonian
viscous shear stress in the Couette-like region, σvisc

xz = ηsγ̇.
In the brush region, the shear stress will additionally contain

a contribution from the polymer chains. In the simplest approx-
imation (assuming independent chains), this will be the entropic
stress in addition to the hydrodynamic, viscous stress of the sol-
vent.37 The entropic stress can be approximated from the individual
chain conformations by Eq. (4). Note that Eq. (4) contains a volume
average, which means it yields the mean entropic stress within the
brush.

The solvent’s hydrodynamic contribution to the shear stress is
given by the solvent’s average shear rate inside the brush,

σhydro
xz = ηs

H�
H

0
dz γ̇(z). (5)

Figure 3 shows the entropic and hydrodynamic stresses obtained
from these approximations alongside the measured wall stress. The
results show that the entropic stress is approximately equal to the
wall’s shear stress for grafting densities Γ = 10−2σ−2 [Fig. 3(a)] and
Γ = 10−1 σ−2 [Fig. 3(b)]. In both cases, the hydrodynamic stress
within the brush is much smaller than the entropic stress. The
entropic stress of the polymer chains is the dominant contribution
to the overall stress within the brush.

C. Dynamic response
The key parameter mediating the reaction of the brush to the

shear flow is the local shear rate γ̇ of the solvent rather than the slid-
ing velocity v. The dynamic response of driven polymeric systems is,
therefore, commonly nondimensionalized through the Weissenberg
number Wi � = γ̇τ �

r , where τ �
r is the equilibrium relaxation time

of a single, dilute chain of length N. Examples include experiments
and simulations in polymer brushes39,40 or self-mated hydrogel
friction.11,12,41 The Weissenberg number compares an equilibrium
measure (the relaxation time) with a non-equilibrium measure
(the shear rate) and is proportional to γ̇ as τ �

r does not depend on
shear rate.

We compute τ �
r from independent molecular dynamics sim-

ulations of free chains via the time-autocorrelation function of
the trace of the gyration tensor �Rg(0)Rg(t)�∝ exp (−t�τ �

r ).21 We
have confirmed that the relaxation time computed from Zimm
dynamics38 [see Eq. (1)] is close (within a factor of 2) to the relax-
ation time obtained from single-chain simulations. Figure 4 shows
the entropic stress as a function of Wi � . At low Wi � , the shear
stress increases linearly with Wi � . This regime crosses over to a
sublinear regime at high Wi � .

We have pointed out already in the Introduction that the
dynamics of the brush is controlled by an outmost blob of volume

FIG. 3. Entropic and hydrodynamic shear stresses as a function of the wall’s shear
stress at grafting densities (a) Γ = 10−2 σ−2 and (b) Γ = 10−1 σ−2 for a system
with 60 beads/chain. Each measurement corresponds to a different sliding velocity
or shear rate. The dashed line represents the wall’s shear stress.
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FIG. 4. Entropic shear stress as a function of equilibrium Weissenberg number
Wi � for different chain lengths N and a grafting density of Γ = 10−2σ−2, using the
relaxation time τ �

r of dilute chains of length N. The dashed lines are a guide to
the eye.

ξ3 rather than the dynamics of the full free chain; see, for exam-
ple, Ref. 33. The relaxation time τr used in the definition of the
Weissenberg number should, therefore, be the polymer relaxation
time of this outermost blob, not the relaxation time τ �

r of the free
chain. While experiments typically have access to τ �

r but not τr,
we can compute τr from microscopic observations on our simula-
tions. We assume that the individual blobs follow Zimm dynamics38

and compute τr from the analytic expression Eq. (1). However,
we do not know a priori the size ξ of the outermost blob. A cru-
cial assumption of our model is, therefore, that ξ is proportional
to the hydrodynamic-penetration length λ. In particular, we use
ξ = λ�√6, since λ measures the penetration from the outermost part

FIG. 5. (a) Entropic shear stress as a function of nonequilibrium Weissenberg num-
ber Wi at different grafting densities Γ for systems with 60 beads/chain. (b) Entropic
shear stress as a function of Wi for different chain lengths at Γ = 10−2σ−2.

of the brush and corresponds to an end-to-end distance rather than
a radius of gyration. Note that similar assumptions were made in
early treatments of dense brushes.33,37 Since λ changes with shear
rate γ̇, this implies that τr(γ̇) also depends on shear rate through
Eq. (1). This nonequilibrium Weissenberg number Wi = γ̇τr(γ̇)
hence depends nonlinearly on γ̇.

We now analyze the entropic shear stress as a function of the
nonequilibrium Weissenberg number Wi. Figure 5(a) shows a lin-
ear dependence of the shear stress on Weissenberg number above
Wi ≈ 0.01. The linearity of the shear response exists independently
of chain length, as evident from Fig. 5(b) that shows the entropic
stress as a function of Wi for chains of different lengths at the same
grafting density. Crucially, the sublinear scaling regime disappears
when using the nonequilibrium Wi rather than the equilibrium Wi �
as the control parameter.

We note that the shear stress increases with grafting density, but
the functional dependence of stress on Wi is independent of graft-
ing density. Estimating the density for transition between mush-
room and brushy regimes yields Γ � ≈ 3.3 × 10−2 σ−2 for N = 20 and
Γ � ≈ 4 × 10−3 σ−2 for N = 100. This means that the short chains
are in the mushroom regime, while the longer chains are brushy,
yet both show a qualitatively identical rate-dependence of the stress
response.

D. Chain conformation
We now relate the rate-dependent trends in stress to changes

in the conformations of grafted chains. A common measure for
conformation of a single chain is the gyration tensor,

R2
g,αβ = 1

N�i
(xi,α − xCM,α)(xi,β − xCM,β), (6)

where �xi is the position of bead i and �xCM is the center of mass of
the chain. Normalizing the gyration tensor in the direction of shear
by its equilibrium value, we observe that the measurements collapse
onto the same curve, despite changing grafting densities [Fig. 6(a)]
or chain lengths [Fig. 6(b)]. In both cases, the gyration tensor in the
direction of shear remains constant up to a threshold of Wi = 1, at
which point it starts increasing rapidly. Note that the nonequilib-
rium Weissenberg number Wi seems to asymptotically approach
a constant value for high shear rates because an increase in γ̇ is
compensated by a decrease in τr.

A more detailed view is offered by computing the orientation
and hardening factors that comprise the entropic stress. In Figs. 6(c)
and 6(e), we observe that the orientation factors fall onto the same
curve, increasing linearly with Wi above approximately Wi = 10−1.
For the densest brush analyzed, the hardening factor is independent
of Wi over the range analyzed. In contrast, our less dense systems
show an increase in the hardening factor starting at approximately
Wi ≈ 1, consistent with the onset of chain elongation. Further-
more, their hardening factor is lower in the Wi-independent regime.
When varying the chain length, we observe that the hardening fac-
tor increases with decreasing chain length in the Wi-independent
regime. Furthermore, systems with longer chains show a stronger
increase in the hardening factor at high Wi.

These trends are consistent with the expected conformations
for flexible chains. At low grafting densities, the chains adopt
random coil conformations with an equilibrium extension ratio
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FIG. 6. Normalized gyration tensor in the direction of shear as a function of Weissenberg number Wi = γ̇τr(γ̇) for (a) different grafting densities Γ (with N = 60 beads�chain)
and (b) different chain lengths N (with Γ = 10−2σ−2). Orientation and hardening factors for different grafting densities (c) and (d) and chain lengths (e) and (f).

h ∼ N−1/2 that decreases with increasing N. At higher grafting den-
sities, the overlapping chains elongate, increasing both h and the
hardening factor in equilibrium.

Finally, we investigate how chain conformation behaves as
a function of distance to the wall. We do so by computing the

internal distance of chain subsegments with ns bonds, normalized
by the contour length Lc = nsb of the said segment. The segments are
chosen such that the first bead is tethered to the wall. Figure 7 shows
that for the lowest grafting density, the normalized end-to-end dis-
tance is reasonably close to results for a single, dilute chain at low Wi.

FIG. 7. Extension ratio h(ns) = r(ns)�Lc(ns) of chain segments with ns bonds, starting from the grafting point. The extension ratio is the internal distance r(ns) normalized
by the contour length Lc = nsb for systems at different Weissenberg numbers Wi. The individual polymers have N = 60 beads/chain. The panels (a), (b), and (c) show the
results for different grafting densities Γ. The dashed lines represent the results for a free chain with N = 60 beads in dilute solutions. A representative snapshot of the system
in equilibrium (Wi = 0) is depicted for each grafting density.

J. Chem. Phys. 159, 094902 (2023); doi: 10.1063/5.0158245 159, 094902-6

© Author(s) 2023

 17 January 2024 10:27:11

https://pubs.aip.org/aip/jcp


The Journal
of Chemical Physics ARTICLE pubs.aip.org/aip/jcp

(The result for a dilute chain is shown by the dashed black lines in
Fig. 7.) By comparison, as the grafting density increases, the normal-
ized end-to-end distance in equilibrium deviates increasingly from
the behavior of the single chain. At low Wi, the solvent flow does not
affect chain conformations in all grafting densities analyzed. As Wi
increases, the chains elongate significantly in both dilute and semi-
dilute systems. While the flow’s effect can be observed close to the
wall for the dilute system, the point at which differences can be first
noticed shifts further away from the wall (higher ns) for the semi-
dilute system. The dense system’s morphology appears independent
of Wi in the range analyzed.

V. DISCUSSION
The central observations from our simulations are as follows:

The solvent flow penetrates into the brush up to a distance λ that
increases with decreasing grafting density but is proportional to the
rate-dependent brush-height, λ∝ H(γ̇); the stress on the wall equals
the entropic stress of the individual polymers, even at high grafting
densities and high shear rates; the shear stress increases linearly with
shear rate at low rates and sublinearly at high shear rates; and the
shear stress increases linearly with the Weissenberg number Wi for
all shear rates but only if the relaxation time that enters Wi is com-
puted for the portion of the polymer chain penetrated by the shear
flow.

We note that hydrodynamic penetration into brushes has
widely been described in the literature (e.g., Ref. 30), and our results
agree with those reports. Our observation λ∝ H(γ̇) suggests that
solvent screening is mediated by a roughly constant amount of
polymer mass both in and out of equilibrium.

The implication of solvent flow, namely the transfer of momen-
tum to the boundaries of the system, has, to the best of our knowl-
edge, not been correlated with the microscopic morphology of the
chains. It is noteworthy that the chain conformational entropy fully
accounts for the external wall stress in all cases considered. This
implies that even at low grafting densities, viscous solvent forces
and intermolecular interactions contribute negligibly relative to the
tension transmitted through chain backbones. This observation is
consistent with the recent results on extensional stress in dense
polymer melts, which can be related to conformation using the
same freely jointed chain model.22 The model even holds in highly
nonequilibrium situations as encountered during extensional flow
or at high shear rates.

At low shear rates, the stress increases linearly with shear rate
as expected from linear response theory. However, we note that
shear-rate independent regimes have been reported in simulations
of brush50 and hydrogel41 friction. We do not observe such a rate-
independent friction (also called Coulomb or adhesive friction)
regime, which typically requires some form of elastic instability for
its emergence.51 While we cannot rule out that it exists, it is likely
that Coulomb friction only emerges if the grafted chains can attach
and detach from a counterbody,52–56 which they cannot do in our
case.

To quantify whether a shear-rate γ̇ is “high” or “low,” we need
to compare it to a characteristic relaxation time of the polymers.
The relevant time scale is the polymer relaxation time. Typically, the
Weissenberg number is defined as Wi � = γ̇τ �

r using the equilibrium
relaxation time of a free chain. Our simulations show a transition to

a nonlinear increase in the shear stress with shear rate at Wi � ≈ 0.01.
We point out that a similar sublinear behavior at high Wi � has
been found in the friction coefficients of monodisperse brushes39,40

and self-mated hydrogels,10,11 with a transition also occurring near
Wi � ≈ 0.01.12,41 For self-mated hydrogels, this regime has been
attributed to both non-equilibrium polymer effects10 and hydrody-
namic lubrication.9 Our results indicate that the shear response of
interfacial polymer chains might lie behind the observed frictional
behavior of self-mated hydrogels.

The decomposition of the entropic stress into the orienta-
tion and hardening factors [Figs. 6(c)–6(f)] allows us to connect
the shear response to morphological changes in the brush. At low
shear rates, the brushes remain close to equilibrium and there is
no clear signature in orientation and hardening factors. The chains
reorient roughly at shear rates high enough that the stress starts to
depend sublinearly on Wi � , which occurs at Wi � � 1. Our simu-
lations indicate that the process occurring at Wi � = 1 appears to be
chain stretching, which can be directly seen in the hardening fac-
tors. The reason that we see chain stretching at this Weissenberg
number is that the standard relaxation time, computed from the
time-autocorrelation function of radius of gyration, corresponds
to the slowest stretch relaxation time of the chain. Orientational
relaxation typically occurs at longer time scales.57

In a polymer brush, the shear response should depend on the
time scale of the relaxation τr of the brush’s outermost boundary
layer that is penetrated by the shear flow33 and not the equilib-
rium relaxation time of the full chain τ �

r . This length scale is the
hydrodynamic-penetration length λ, which is independent of the
shear rate for our densest system only [Fig. 2(a)]. As a result, it is
valid to approximate the system’s behavior with a constant relax-
ation time for a dense brush. However, for the semi-dilute and dilute
systems, the hydrodynamic-penetration length and thereby the poly-
mer relaxation time decrease significantly at high shear rates, which
can be attributed to a decrease in the brush’s height [Fig. 2(b)].

The relaxation time τr of the outmost part of the brush can
be estimated from Zimm dynamics, Eq. (1), with a blob size ξ ∼ λ.
Using this (shear rate-dependent) relaxation time to compute the
Weissenberg number, Wi = γ̇τr(γ̇), we observe that the sublinear
regime at high Wi � becomes linear. This behavior emerges at all
grafting densities [Fig. 5(a)] and chain lengths [Fig. 5(b)]. These
results are in agreement with the assumption made in previous the-
oretical models that polymer brushes in shear flow can be described
as strings of Pincus blobs.31,32,35,37,58

Detailed morphological insights can be obtained from
the conformations within the chain. The normalized internal
distance (Fig. 7) becomes susceptible to shear flow closer to the wall
in the dilute system than in the semi-dilute system. This can be
attributed to the larger solvent flow within the chains in the dilute
system, resulting in a larger hydrodynamic-penetration length. Our
results show that chain conformations become increasingly linear
due to the influence of the shear flow. The lack of Wi-dependency
in the dense system can be attributed to the lack of shear flow
penetration into the brush.

The normalized internal distance also sheds some light onto
the relation between the orientation and hardening factors in dilute
and semi-dilute systems. Even though in shear flow, the strongest
shear force acting on the chains is located at the outermost blob, the
reorientation of the chain involves the relaxation of the full chain.
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However, in Fig. 7, we observe that chain elongation is not dis-
tributed equally among the chains’ backbone but becomes stronger
further away from the grafting site, i.e., it becomes stronger toward
the location of the outermost blob.

VI. SUMMARY AND CONCLUSIONS
In summary, our results show that the brush’s outermost

“blob,” the portion of the polymer chain that is exposed to shear of
the solvent, determines the system’s shear response. The flow pen-
etrates less into dense than into dilute brushes. For dilute brushes,
the flow penetrates less at high shear rates because the chains tilt.
This leads to a shrinking, and effectively also a densification, of
the brush. As a result, the relaxation time relevant to the system’s
shear response decreases at high shear rates. If this mechanism is
not considered in the definition of the Weissenberg number—the
quantity typically used to characterize the effect of solvent shear
on polymeric systems—then the shear stress will appear to depend
sublinearly on Wi. This phenomenology has been observed in poly-
mer brush and self-mated hydrogel simulations and experiments at
high Wi.12,14,17,39–41
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APPENDIX: FLORY’S CHARACTERISTIC RATIO

We compute Flory’s characteristic ratio from polymer melt
simulations with chains of length N. The systems were first
equilibrated at a temperature of T = 0.6 ε and a pressure of

FIG. 8. Flory’s characteristic ratio as a function of chain length. The dashed line
represents C∞ = 1.7.

P = 5 × 10−4 mσ−1τ−2. This procedure produced systems with a
monomer density of approximately ρ = 0.87 σ−3. A second equili-
bration at constant volume followed at an increased temperature
of T = 2.0 ε to increase diffusivity. Finally, at T = 0.6 ε, the end-to-
end distance of each chain was sampled every 103 time steps for 105

time steps. Flory’s characteristic ratio was computed for each system
using the relation Cn = �R2��nb2, where n = N − 1 is the number of
bonds in a chain.38

We see in Fig. 8 that Flory’s ratio increases rapidly with
N for N < 30 beads and saturates for higher N at ∼1.7. It follows that
C∞ = 1.7.
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