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ABSTRACT
Interatomic potentials approximate the potential energy 
of atoms as a function of their coordinates. Their main 
application is the effective simulation of many-atom sys-
tems. Here, we review empirical interatomic potentials 
designed to reproduce elastic properties, defect energies, 
bond breaking, bond formation, and even redox reactions. 
We discuss popular two-body potentials, embedded-atom 
models for metals, bond-order potentials for covalently 
bonded systems, polarizable potentials including charge- 
transfer approaches for ionic systems and quantum-Drude 
oscillator models mimicking higher-order and many-body 
dispersion. Particular emphasis is laid on the question 
what constraints ensue from the functional form of a 
potential, e.g., in what way Cauchy relations for elastic 
tensor elements can be violated and what this entails for 
the ratio of defect and cohesive energies, or why the ratio 
of boiling to melting temperature tends to be large for 
potentials describing metals but small for short-ranged 
pair potentials. The review is meant to be pedagogical 
rather than encyclopedic. This is why we highlight poten-
tials with functional forms sufficiently simple to remain 
amenable to analytical treatments. Our main objective is 
to provide a stimulus for how existing approaches can be 
advanced or meaningfully combined to extent the scope 
of simulations based on empirical potentials.
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1. Introduction

Interatomic potentials are functions of nuclear coordinates approximating 
the electronic ground state energy, or for metals, the electronic free energy 
of a system. Forces on atoms, as needed in molecular-dynamics simulations, 
can be obtained by calculating the gradient of these functions with respect to 
the nuclear coordinates. Frequently, the terms interatomic potential and 
force field are used synonymously. There is, however, a subtle and some-
times important difference between the two. Many-body force fields are not 
necessarily gradients of a scalar function, in contrast to “real” interatomic 
forces when electrons are given enough time to equilibrate. In this review, 
we focus on force fields that can be represented as gradients of scalar 
functions approximating the exact interatomic potentials. Before getting 
started on details, let us take a step back.

In his Lectures on Physics, Richard Feynman wondered what statement 
would contain the most information in the fewest words, if all of scientific 
knowledge were to be destroyed in some cataclysm, and only one sentence 
could be passed to the next generations of scientists [1]: I believe it is the 
atomic hypothesis that all things are made of atoms – little particles that move 
around in perpetual motion, attracting each other when they are a little 
distance apart, but repelling upon being squeezed into one another. Two- 
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body potentials reflect this generic behavior, except those describing two 
ions carrying a charge of identical sign, since they repel each other even at 
large separation.

In fact, quite a bit can be learned from studying two-body potentials. For 
example, the crystalline structure of many elemental or binary crystals can be 
rationalized, as it is done in any better text book on solid state physics. 
Moreover, the functional form of constitutive laws is often independent of 
the precise nature of the potentials, such as Hooke’s law, which states restoring 
forces of solids in equilibrium to be linear in small deformations. Even many 
non-linear constitutive equations do not depend on the details of the poten-
tial. The exponents with which compressibility or specific heat diverge as the 
temperature or pressure approaches the fluid-vapour critical point are iden-
tical for all substances irrespective of their specific interactions [2–4]. The way 
how the viscosity of polymers increases with molecular weight can also be 
described with the help of two-body potentials, as long as they prevent two 
polymers from crossing each other [5]. These are but a few examples for the 
success of two-body potentials. The only thing that does depend on chemical 
detail, it almost seems, are boring prefactors. Unfortunately, or, depending on 
your viewpoint, fortunately, this is not quite right.

Realistic parameterizations of two-body potentials, including Morse [6], 
Buckingham [7], or Lennard-Jones (LJ) [8], favor close-packed assemblies of 
atoms, e.g. face centered cubic or hexagonal closed packed lattices. Thus, 
neither molecular crystals as those formed by oxygen or nitrogen at small 
temperature, nor layered crystals like graphite at ambient conditions could 
be thermodynamically stable. Even those elements that do like to close pack 
may not be describable by two-body potentials. For example, the proper 
description of the elastic properties of metals and their ductility hinges on 
many-body terms [9]. The importance of directed interactions and thus of 
many-body terms is particularly apparent for carbon, where depending on 
the hybridization of individual carbon atoms, different interatomic forces 
ensue. In the worst case, history dependence of interatomic, or rather, 
interionic forces can arise. To illustrate this point, assume a NaCl molecule 
dissociates into ions in water and the water is evaporated later so that two 
isolated ions emerge. If, however, the NaCl molecule had been separated 
slowly in an inert gas environment before the nuclear degrees of freedom 
had been brought to their final destinations, two neutral atoms would have 
formed. This is because the ionization energy of sodium exceeds the electron 
affinity of chlorine. Real powerful potentials should mimic such a process 
correctly and account for charge transfer in the appropriate way, though the 
notion that forces arise as an unambigous function of nuclear coordinates 
would have to be abondened. From this discussion, we can see that no 
chemistry and none of its implication (batteries, laptops, soccer, or life in 
a more general sense) could arise if atomic systems could be accurately 
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described with two-body potentials. In brief, without many-body interac-
tions, the world in general, and science in particular, would be much less 
exciting than it actually is.

The root of many-body potentials is that two atoms change their inter-
action when additional atoms are present, because their electronic structure 
changes. For instance, two hydrogen atoms prefer to form a strong covalent 
bond between them rather than to remain lonely. However, as soon as an 
oxygen enters the scene, the hydrogens stop being homo and happily form 
a heteronuclear water molecule with the oxygen.

Many-body potentials were much advanced over the last few decades. 
Realistic, large-scale simulations of several thousand atoms can nowadays 
be conducted even on commodity computers, at least for selected compounds 
such as simple metal alloys or hydrocarbons. Force-field based simulations of 
increasingly complex systems and processes become possible, including those 
during which atoms rehybridize in the course of a chemical reaction [10–12]. 
However, the need for further improvement remains, in particular for sys-
tems in which two or even more different bonding types (ionic, metallic, 
covalent, dispersive) combine. This text is meant to provide a rudimentary 
understanding for why specific functional forms for potentials were chosen 
and what a given (class of) potential may or may not achieve. With this, we 
hope to stimulate insight on how to combine or to generalize different 
potential classes so that systems held together by different bonding types 
can be better simulated in the future. Since an incredible number of papers on 
potentials has been published, we are certain to have missed important 
contributions, even if we did our best to identify the original key literature.

Focusing on concepts leaves us little room to provide readers with the 
best possible parameterization for a given substance and application. 
Performance evaluations of potentials and their parameterization contain-
ing information like the specific parameterization by author A using potential 
B reproduces properties C and D of the material E but does a poor job on 
properties F and G are probably better looked up in one of several excellent 
and important databases [13–18]. In addition, we wish to refer to many 
excellent reviews [19–33] or even text books [34,35] on interatomic poten-
tials emphasizing specific parameterization of potentials more than this 
review. Here, we discuss materials- or element-specific numbers only 
when we explore the transferability of a potential, which is its ability to 
accurately predict properties, structures, and/or stoichiometries, which it 
was not adjusted for. In addition, one system is highlighted for each class of 
bonding type. To this end, we chose argon as the representative of systems 
bonding through van-der-Waals, because its dispersive interactions are half 
way between those of water and CH2 or CH3 units in hydrocarbon chains. 
Carbon, copper, and rocksalt (NaCl) complement the list to represent 
metals, covalently bonded materials, metals, and systems.
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2. Classification, construction, and consequences of (many-body) 
potentials

2.1. Brief classification of interaction potentials

The way in which interactions are incorporated into potentials is so diverse 
that they can be classified according to several main criteria: the chemical 
nature of the bond, whether a bonding topology is prescribed or allowed to 
change, two-body versus many-body interactions, and the degree of empiri-
cism or level of theory used to construct the functional form of the potential 
and to gauge adjustable parameters.

Atoms with open valence shells form covalent or metallic bonds, while 
atoms with closed valence shell interact through van der Waals forces. The 
latter include repulsion at short separation and dispersive forces, which 
result from the mutual induction of dipoles and other multipoles owing to 
quantum-mechanical fluctuations of the valence shell. Each bonding type 
has its own characteristics how interatomic forces change with interatomic 
separation and as a function of their environment, which motivates the 
distinction between open-shell and closed-shell potentials. Van der Waals 
or “non-bonded” interactions have energies on the order of thermal energy 
at room temperature and are thus weaker than covalent and metallic bonds. 
In addition, there can be Coulombic interactions due to partial or close-to- 
integer charges on atoms or ions. Interactions between atoms can also be 
a combination of all of the above, the most prominent example involving the 
hydrogen bond.

Potentials with a fixed bonding topology range from simple bead-spring 
models [5] to highly sophisticated, chemically realistic valence force fields 
containing explicit bond-angle or torsional terms [36–43]. Two atoms 
interact differently with each other, depending on whether they are con-
sidered bonded or non-bonded to each other, even if all involved atoms 
carry the same chemical symbol, or, if they correspond to the same coarse- 
grained entities, such as a so-called united atom reflecting, for example, 
a CH2 or CH3 group [39]. The design of valence force fields is in a rather 
mature state [36–43], which is why we will discuss them only peripherally. 
This does not prevent us from highly recommending their use for any 
situation, in which bond breaking and bond formation can be ruled out, 
simply because they are computationally lean while being sufficiently accu-
rate for many purposes. Nonetheless, weaknesses remain, in particular the 
frequently poor treatment of higher-order and many-body dispersion as 
well as of charge transfer, which, however, are all best explained assuming 
free atoms or ions rather than bonded entities as reference. In a biophysical 
context, a proper treatment of dispersive interactions can be particularly 
important when molecules transfer between aqueous and hydrophobic 
environments, since the dispersive interactions with carbon-hydrogen 
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chains are stronger than with water molecules [44]. Adsorbing higher-order 
or many-body effects by tweaking pertinent Lennard-Jones interaction 
coefficients is then even more hazardous than for homogeneous phases. 
Thus, readers being interested in improving bonded potentials for biomo-
lecular simulations have no excuse to stop reading here.

The distinction between two-body and many-body potentials should 
be self-explanatory. The latter can be further subdivided into explicit or 
implicit. An explicit many-body potential does not require on-the-fly 
adjustments of parameters like atomic charges or dipoles. In contrast, 
implicit many-body potentials necessitate the determination of such 
quantities. This is commonly achieved by minimizing expressions for 
the potential energy with respect to degrees of freedom representing 
a coarse-grained version of the full electronic response. Also explicit 
many-body potentials can be categorized into further subgroups. They 
can be cast in terms of analytical functions, or numerical tables, or they 
can be extrapolated from a large set of high-dimensional data as is done 
in machine-learned potentials [29,31–33].

Potential classes are sometimes also named differently depending on 
the quantum-mechanical framework from which they are motivated. 
For example, embedded-atom potentials [9,45] are best motivated 
from density-functional theory, while second-moment tight-binding 
potentials [46,47] arise, as their name says, quite naturally from the 
tight-binding approximation. Potentials lacking a direct theoretical jus-
tification are also called empirical. While we could elaborate much more 
on how to further classify potentials, we feel compelled to cut to the 
chase.

2.2. Constructing (many-body) potentials

Formally, it is possible to expand the potential energy U rf gÖ Ü of a (classical) 
many-atom system into two-body, three-body, and higher-order contribu-
tions, where frg represents the positions of atoms, i.e. 

UÖfrgÜ à
X

i
U1ÖriÜ á

X

i< j
U2Öri; rjÜ á

X

i< j< k
U3Öri; rj; rkÜ á � � � : (1) 

Here, the index in the UÖ. . .Ü‘s on the r.h.s. of the equation gives the order of 
the many-body expression. For non-elemental systems, the UnÖ. . .Ü also 
depend explicitly on the atomic indices, or more precisely on the nature 
of the atoms interacting with each other. The underlying assumption of the 
expansion is that electrons are in a well-defined state, e.g. in their ground 
state or in thermal equilibrium.
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As long as external fields are present, two-body and higher-order inter-
actions generally do not obey Galilean or rotational invariance, which is 
illustrated in Figure 1. It depicts two atoms with full valence shells, which 
are polarized by the electrostatic field of an external dipole. Depending on 
the relative position of the external dipole to the two atoms, the atoms will 
experience an electrostatic repulsion, as in panel (a), or attraction, as in 
panel (b), in addition to their previous interaction.

In the absence of external fields, the two-body potential can be reduced to 
depend only on the interatomic distances rij, in which case Eq. (1) reduces to 

UÖfrgÜ à
X

i< j
U2ÖrijÜ á

X

i< j< k
U3Örij; rjk; rkiÜ á . . . (2) 

Expansions of the form given by Eq. (2) are sometimes called cluster 
potentials [19,35]. Unfortunately, even this Galilean invariant expansion 
Eq. (1) is of limited (direct) use for systems of practical interest, because 
its convergence can be extremely slow. This is best seen when considering 
an ion in close proximity to a metallic surface. The ion induces a charge 
distribution in the metal that depends on the shape of the metal surface 
turning a formal expansion into explicit many-body terms useless. Likewise, 
comparing local structural motives to an existing database, as is done with 
machine-learned potentials, does not appear to be promising in this exam-
ple, although they frequently allow to effectively truncate an expansion 
similar to that outlined in Eq. (2), however, with atoms not being in vacuum 
but surrounded by other atoms.

Equation (2) converges relatively quickly only for closed-shell atoms, 
meaning atoms whose valence shell is filled, like noble gas atoms and singly 
charged alkali cations or halogen anions [48]. Even then convergence might 
not be truly impressive. Two-body interactions commonly used to simulate 
condensed phases of noble gas atoms are effective pair potentials rather than 
true pair potentials accurately reproducing the second virial coefficient [49]. 
The difference between effective and true potentials compensates to some 

+ -

(a) (b)

+-

Figure 1. Effect of an external dipole, marked by a positive and negative sign, on secondary, 
induced dipoles indicated by arrows. Depending on the location and orientation of the central 
dipole, be it permanent or dynamic, the induced dipoles repel (a) or attract (b) each other.
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extent for omitted many-body effects. Thus, pair and three-body potentials 
trained exclusively in the bulk risk to be inaccurate when applied to surfaces 
and gases. Despite its frequent ineffectiveness, Eq. (2) allows the difference 
between two opposite philosophies to the construction of potential function 
to be discussed: the bottom-up and the top-down design, which would lead 
to the construction of non-empirical and empirical potentials, respectively.

In the bottom-up approach, pen-on-paper quantum chemistry, density- 
functional theory (DFT), or any related electronic structure calculations 
provides analytical results and/or small-scale data, such as forces on indivi-
dual atoms as a function of the atomic configurations frg or energies of 
diatomic molecules as a function of bond length. Such information can 
motivate the functional form of a two-body potential or be used to construct 
soulless look-up tables. From a philosophical point of view, it could be 
argued that inputting experimental information on dimers, trimers, etc., 
falls into the bottom-up approach, as the electronic structure problem is 
solved by nature rather than by computers. Of course, the downside of 
letting nature do that job is that it is quite difficult to get enough experi-
mental data on small molecules and clusters that would allow the higher- 
order terms in the series of Eq. (2) to be determined to any significant 
accuracy. Only pair potentials can probably be deduced to high precision 
from measurements of the vibrational and rotational spectra without having 
to make serious restrictions on their functional form.

In the top-down design, no atomic-scale information is provided, but 
instead collective, typically macroscopic properties, such as elastic proper-
ties, equations of state (EOS), surface energies, or the temperature depen-
dence of the specific heat including heats of melting and evaporation. In the 
sense of an inverse problem, or reverse coarse-graining, potential energy 
functions are constructed such that the available information is reproduced. 
Historically, the first attempts to design potentials followed this approach. 
The arguably most systematic top-down design makes use of the virial 
expansion [50,51], in which the pressure p of a many-particle system in 
thermal equilibrium and in the absence of external fields is expanded into 
a power series of the number density ρ, 

p à ρkBT 1á B2ÖTÜρá B3ÖTÜρ2 á � � �
�  

; (3) 

where kBT is the thermal energy, while B2ÖTÜ and B3ÖTÜ denote the second 
and third virial coefficient, respectively. The so-called cluster expansion 
[52,53] allows the various virial coefficients to be related to two-body, three- 
body, and higher-order interactions. For example, knowledge of the second 
virial coefficient 
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B2ÖTÜ à �
1
2

Z
d3r âexp f�βU2ÖrÜg � 1ä (4) 

allows the pair potential to be reconstructed by an inverse procedure, though 
a numerically stable inversion works best if U2ÖrÜ is represented as a function 
with few adjustable parameters. The third virial coefficient, B3ÖTÜ, depends on 
two- and three-body interactions, and so on. Thus, in principle, two substances 
may have similar second but different third virial coefficients so that knowledge 
of B3ÖTÜ allows deviations from pair additivity to be quantified and adjustable 
parameters of a three-body potential U3Ör12; r23; r31Ü to be gauged.

Unfortunately, the virial expansion does not converge for every state 
point, due to the existence of thermodynamic discontinuities a.k.a. phase 
transformations [54]. This is one reason why the expansion of Eq. (2) 
cannot be fully parametrized from a cluster expansion after all. Yet, early 
calculations performed by van der Waals in the spirit of a cluster expansion, 
revealed that the leading-order corrections to the ideal-gas EOS requires the 
two-particle interaction in simple gases to obey [55] 

U2ÖrÜ à �
C6

r6 ; (5) 

at large distances. Today, C6 is called the dipole-dipole dispersion coefficient.
About 50 years after van der Waals, London [56] rationalized why atoms 

and molecules with closed valence shells attract each other through pairwise 
additive 1=r6 interactions by coupling the quantum-mechanical ground 
state fluctuations of their dipoles in the far-field approximation. Extending 
London’s treatment to higher-order electrostatic multipoles and 
beyond second-order perturbation theory leads to refinements of the theory, 
which are outlined in Sect. 4. Despite the existence of corrections, the 
bottom-up approach reveals quite clearly that the exponent in Eq. (5) is 
essentially exact, at least as long as electrostatic interactions can be treated as 
instantaneous (or the speed of light as infinitely large) [57,58]. Tweaking the 
exponent to better match reference data would quickly result in overfitting 
of the potential: a better match of the reference data would deteriorate the 
description of interatomic forces between two isolated particles at large 
distances. Thus, bottom-up and the top-down design of interatomic poten-
tials are complementary to each other but should converge to similar results 
assuming sufficient and sufficiently accurate input.

2.3. Consequences of many-body interactions

A common way to assess the relevance of many-body interactions is to 
determine what percentage of the cohesive energy is related to the exact or 
to an effective two-body interaction. Such an analysis may be misleading, 
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because defect energies or elastic properties may not be described well even 
if the total energy of a crystal or the radial distribution function of a liquid 
reproduces ab-initio or experimental data. We can always adjust a pair 
potential that reproduces the cohesive energy of a specific crystalline 
phase (discussed extensively below) or that fits a specific liquid pair dis-
tribution function (see e.g. Refs. [59,60]). These properties often benefit 
from the annihilation of or from the insensitivity to many-body contribu-
tions, but the resulting potentials are then not transferable between crystal 
structures, temperatures, or other states of the system. Even three-body 
correlation functions may be poor properties on which to gauge potentials. 
Liquid copper and liquid argon just above their crystallization temperature 
both assemble in structures similar to that of random-sphere packing [61], 
despite their potentials being utterly different.

Induced dipoles or charge transfer decrease the total energy (and hence 
make the “bonds” stronger), or they would not occur. In contrast, most 
other many-body interactions weaken bonds, i.e. the energy per bond in 
metals decreases with increasing coordination number Z, typically with 
1=

ÅÅÅ
Z
p

for metals and even more quickly for covalently bonded systems 
(see Sect. 5 or Refs. [46,62,63]). This scaling has important consequences 
not only on what crystal structure is assumed but also on the relative 
increase of boiling relative to the melting temperature, which is roughly 
4% for argon but 100% for copper.

Another frequent consequence of many-body terms is that bond lengths 
become shorter with decreasing coordination or increasing bond order. One 
of the best known example may be the bond length between two carbon 
atoms: a0 ⇡ 1:54 Å (ZH à 3, ethane, C2H6), 1.34 Å (ZH à 2, ethylene, C2 
H4) 1.20 Å (ZH à 1, acetylene, C2H2), where ZH states how many hydrogen 
atoms each carbon is bonded to. Similarly, the spacing between layers near 
a free metal surface contract [64], while common short-range pair potentials 
would predict them to expand.

Historically, the non-additivity of atomic potentials lead to the dismissal 
of the atomic hypothesis among many prominent scientists in the 19ȸth 
century, see Ref. [65] for a well written and very enlightening account of the 
debate. The assumption was that atoms, so they exist, should only interact 
through central potentials and be pairwise additive. Cauchy and Poisson 
[65] and also potentially St. Vernan [66] had shown that this reduced the 
number of independent elastic tensor elements, e.g. from 21 to 15 for 
a triclinic crystal and from three to two for a cubic crystal. Specifically, 
they found, see Sect. 3.5 for a derivation, that any permutation of the four 
indices of an elastic tensor element should leave it unchanged so that 
relations, now known as Cauchy relations, like, for example, C1212 à C1122, 
or, C12 à C66 (in cubic systems C44 à C66) in Voigt or Nye notation, would 
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hold. It then came as a blow to the atomic hypothesis when Voigt noticed 
that none of the crystals he had investigated satisfied the Cauchy relation 
within experimental errors [67]. Figure 2 epitomizes results on the violation 
of the pair-potential assumption. The latter is also frequently stated in terms 
of the Cauchy pressure PC à ÖC12 � C44Ü=2, which vanishes for athermal, 
inversion-symmetric, classical crystals interacting with pair potentials.

Rather than abandoning the assumption of the pairwise additivity of 
potentials, many scientists rejected the atomic hypothesis alltogether. 
However, Rutherford’s scattering experiments in the early 20ȸth century 
removed all legitimate doubt about it, even if quite a few muddleheads keep 
taking issue with it up to this day in happy concert with deniers of human- 
made climate change. Finally, Born [75] reconciled the properties of the 
elastic tensor of real materials with the atomic hypothesis by showing that 
one (of several) reasons for the breakdown of Cauchy relations is the 
existence of many-body interactions.

It should certainly not be concluded that solids obeying the Cauchy 
relations automatically satisfy the pair-potential assumption, since there 
can be fortuitous or symmetry-induced cancellation of many-body effects. 
For example, the dipole polarizability of anions in the rocksalt structure 
cannot reveal itself in the elastic tensor for symmetry reasons.

0.2 0.4 0.6 0.8 1.0 1.2 1.4
C66 / B

0.1

1.0

C
66

 / 
C

12

centrosymmetric
non-centrosymm.
nn-Ducastelle (fcc)

pair potential

iso
tro

py

MgS (rs)

LiD (rs)

LiF (rs)

LJ (fcc)

Au (fcc) Cu (fcc)

K (bcc)

MgS (zb)

α−SiO2

C (dc)

NaCl (rs)

V (bcc)

Ge (dc)

ZnTe (zb)

CuZr (cc)

CsCl (cc)

Figure 2. Ratio of elastic tensor elements C66 and C12 as a function of C66 in units of the bulk 
modulus B for a variety of cubic systems. (C66;C44 in cubic systems.) The blue line holds for pair 
potentials, while the red line reflects elastically isotropic materials. The thin gray line assumes the 
generic model proposed by Ducastelle, introduced in Sect. 5.2, which has one dimensionless 
parameter affecting the C66=C12 and C66=B ratios in the nearest-neighbor approximation. 
Centrosymmetric lattices (closed circles) include face-centered cubic (fcc), body-centered cubic 
(bcc), rocksalt (rs), and caesium chloride (cc), while diamond cubic (dc) and zinc blende (zb) lack 
inversion symmetry (open diamonds). Experimental and simulated data are included for selected 
crystals (Cu [68], Au [68], K [68], V [68], C [68], Ge [68], NaCl [68], LiD [69], LiF [68], MgS(rs) [70], 
MgS(zb) [70], ZnTe [71], CsCl [72], α� SiO2 [73]) as well as calculated elastic constants for CuZr [74].
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3. Two-body potentials

In this section, we introduce the most generic two-body potentials for pairs 
of atoms forming covalent and metallic bonds in the condensed phase as 
well as potentials for ionic and van der Waals interactions. We discuss these 
two classes separately, because atoms with open electron shells bond pri-
marily through the sharing of electrons while closed-shell atoms interact 
predominantly through van der Waals or ionic forces. Both classes reflect 
Feynman’s mantra that [atoms attract] each other when they are a little 
distance apart, but repel upon being squeezed into one another [1]. 
Interatomic potentials with well-motivated functional forms can reproduce 
the equation of state, reasonably well if their small number of adjustable 
parameters are gauged on a few accurate reference values. However, para-
meters are only transferable to other structures or properties if the pair- 
potential assumption is justified.

An element specific analysis of the potentials will be made for carbon (C), 
copper (Cu), sodium chloride (NaCl), and argon (Ar), which are represen-
tative of covalent, metallic, ionic, and van-der-Waals bonding, respectively. 
To set the stage for further discussion, their pair-potential energies are 
shown in Figure 3 as a function of the molecular bond length r. The 
reference data shown therein is not necessarily the most accurate on the 
market, but their overall errors should be minor compared to those of lean 
pair potentials, i.e. the data should be sufficiently accurate to test if a given 
functional form of the two-body potential is justified.

3.1. Morse potential

One of the early, great successes of quantum mechanics was Heitler and 
London’s quantitative description of the chemical bond in a hydrogen 
molecule in 1927 [78]. Their theory is text-book material and will only be 
sketched here. Heitler and London linearly combined the atomic wave 
functions of the two hydrogen atoms forming a H2 molecule, antisymme-
trized the spin-wave function to reflect the Fermi principle, and evaluated 
the binding energy using first-order perturbation theory, thereby providing 
a lower bound for the molecular binding energy U0. Sugiura [79] succeeded 
in identifying the correct solution for the exchange-energy integrals. Errors 
of order 40% for U0 and bond length a0 remain, see Figure 4. Treating aB in 
the electronic ground-state wave functions Φ / expÖ�r=aBÜ as a variational 
parameter, errors can be reduced by a factor close to two.

Morse [6] approximated the analytical expressions occurring in the 
Heitler-London treatment with 
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UÖrÜ à U0 en Ö1�r=r0Ü � 2en Ö1�r=r0Ü=2
⇣ ⌘

; (6) 

where U0 is the molecular binding energy, also called dissociation energy, r0 
the equilibrium bond length, and n a dimensionless number. Historically, 
Morse did not introduce the parameter n but rather a à n=Ö2r0Ü, which is 
still commonly used today. Moreover, he expressed the energy relative to the 
ground state, ΔUÖrÜ :à UÖrÜ � U0, 

ΔUÖrÜ à U0 1� e�aÖr�r0Ü
⇣ ⌘2

: (7) 

To ease comparisons between different potentials and to yield 
UÖr!1Ü à 0, we choose forms similar to Eq. (6) throughout this article.
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Figure 3. (a) Two-body potentials of different diatomic molecules, UÖrÜ, normalized to the 
binding energy U0 as a function of the bond length r in units of the equilibrium bond length r0. 
Symbols reflect high-accuracy reference data, while lines show fits of pair potentials introduced 
in Sect. 3 to the energy minimum. Reference data include the Aziz potential for Ar2 [76], and 
quantum chemical calculations for C2 [77], Cu2 [215], and NaCl [339]. Numbers used for the fits 
are listed in Table 1. (b) Two-body potentials with a curvature in the minimum corresponding to 
that of the Lennard-Jones potential.

Table 1. Comparison of pair-potential parameters obtained after fitting adjustable 
coefficients to accurate reference data on diatomic molecules (mol) and on 
crystals, where dc and rs are the diamond cubic and rock salt structure, respec-
tively. Numbers indexed with a star are functions of the adjustable parameters. 
Used potentials are, Born-Mayer/Buckingham for argon and sodium chloride, and 
the Morse potential for carbon and copper. Plots of the respective potentials are 
shown in Figure 3. The first seven neighbor shells are included into the fit.

U0 (eV) r0 (Å) n r0=n (Å)

Ar (mol) 0.01234 3.757 14.6 0.26*

Ar (fcc) 0.01155 3.811 14.1 0.27*
C (mol) 6.318 1.250 5.82 0.21*
C (dc) 2.868 1.804 5.34 0.34*
Cu (mol) 1.823 2.275 6.80 0.33*
Cu (fcc) 0.3964 2.717 7.81 0.35*
NaCl (mol) 5.152* 2.442 7.91 0.31*
NaCl (rs) 7.199* 2.309 7.47 0.31*

ADVANCES IN PHYSICS: X 13



Morse [6] recognized that the vibrational levels of many diatomic mole-
cules, both homo- and hetero-nuclear, could be described quite accurately 
when treating U0, r0, and n as adjustable parameters. The parameter n allows 
the curvature of UÖrÜ in the minimum to be adjusted independently from 
the ratio U0=r2

0, however, no additional fine tuning of higher-order deriva-
tives is possible. Given its simplicity, the Morse potential approximates 
reference data impressively well, as can be appreciated in Figure 3 for Cu2 
and C2. It even represents the curves obtained for H2 at different accuracy 
levels at which the hydrogen molecule is described and substantially better 
so than cubic fits to the energy minimum, see Figure 4.. Of course, there are 
also exceptions, where the Morse potential fails, e.g. Cr2, which is described 
in Sect. 3.4.

An important result of the Heitler-London treatment is that short-range 
repulsion between atoms increases (approximately) exponentially with 
decreasing distance as two atoms approach each other. All highly-accurate 
potentials use repulsion that does not stray too far away from such 
a dependence as the pressure of (simple) bulk systems increases approxi-
mately exponentially at high compression with pressure for all bonding 
classes, at least as long as external pressures do not substantially exceed 
the bulk modulus B, which we will get back to in Sect. 6.1.

The simplest generalization of the Morse potential is a double exponen-
tial [62] of the form 

UÖrÜ à U0

n�m men 1�r=r0Ö Ü � nem 1�r=r0Ö Ü
n o

; (8) 

Figure 4. Binding energy assuming different quantum chemical approaches to the binding in 
H2. Full lines are fits to that data near the minimum assuming the functional form proposed by 
Morse. Dashed lines represent cubic fits to the minimum. The inset shows the same data but 
normalized to the respective equilibrium bond lengths and binding energies.
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which reduces to Morse if the additional parameter m is set to n=2. As Abell 
[62] noted, “this choice is based in part on analytical convenience, but also on 
the physical grounds that atomic orbitals decay exponentially with r“. 
However, these long-range asymptotics are irrelevant at very small separa-
tions between nuclei, as briefly discussed in Sect. 3.2.2.

3.2. Mie/Lennard-jones and Born-Mayer/Buckingham potentials

The so-called Lennard-Jones potential [8] is the arguably most used poten-
tial in molecular simulations. It describes the interactions between entities 
with closed-electron shells quite well. This includes not only interactions 
between noble gas atoms, but also the intra- and intermolecular forces 
between, say, two CH2 repeat units in polyethylene as long as the two 
units are not directly connected by a covalent bond. The functional form 
of the regular LJ potential is 

UÖrÜ à U0
r0

r

⇣ ⌘12
� 2

r0

r

⇣ ⌘6
⇢ �

: (9) 

Here U0 is the binding energy and r0 the equilibrium bond length. The more 
common way to write the LJ potential is 

UÖrÜ à 4✏
σ
r

⇣ ⌘12
� σ

r

⇣ ⌘6
⇢ �

; (10) 

where ✏ :à U0 and σ :à r0=
ÅÅÅ
26
p

. However, comparison to other potentials 
and analytical manipulations are more easily done when starting from 
Eq. (9).

The attractive 1=r6 term is the leading-order dispersive interaction. The 
exponent can be motivated rigorously from perturbation theory, as sketched 
in Sect. 4.3. In contrast, the exponent from the repulsive 1=r12 term is 
a mixture of convenience and good luck. It results from the squaring of 
the 1=r6 term, which was particularly beneficial at times when numerics was 
not yet done by machines but by humans. This facilitated the work of those 
who were dismissively called Rechenknechte by theoretical physics profes-
sors in Germany in the beginning of the 20ȸth century. The term translates 
to computing or arithmetic servants and is nowadays used for computers. 
However, when treating the exponent as a fit parameter in a generalized 
Lennard-Jones potential 

UÖrÜ à U0

n� 6
6

r0

r

⇣ ⌘n
� n r0

r

⇣ ⌘6
⇢ �

with n! 6 ; (11) 

the exponent n generally turns out close to its generic value of n à 12.
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Replacing the exponent 6 in Eq. (11) with a number 0<m< n yields the 
Mie potential [80]. The regular LJ potential can therefore be regarded as 
a limiting case of Mie’s functional form, a so-called 12–6 Mie potential. In 
contrast, it may not be entirely appropriate to downgrade a Mie potential 
with arbitrary exponents as a generalized LJ potential, since Mie’s work [80] 
predated those of Lennard-Jones [8,81] by more than two decades and in 
fact, it is not clear to us who was the first to use n à 12 as exponent in the 
repulsion. Jones, later known as Lennard-Jones, assumed it to be n à 15 
[81] for argon.

Rather than tweaking the exponent of a Mie potential, it is probably more 
meaningful to replace it with an expression that somehow accounts for the 
Pauli repulsion between closed electron shells, whose density decreases as an 
exponential function of the interatomic distance. Slater [82] was the first to 
identify such a dependence for helium dimers by using a similar approach as 
Heitler and London [78]. The functional form he identified as being most 
appropriate for a limited range of interatomic distances was a single expo-
nential, as in the Morse potential. Later, Born and Mayer [83] used the same 
functional form for the description of repulsion in simple ionic crystals 
without further theoretical justification but merely by arguing that it fits 
experimental results better than an inverse power as in Mie repulsion [83]. 
Buckingham [7] made a similar observation for noble-gas solids. Using 
exponential repulsion and 1=rm attraction then leads to the two-body 
potential 

UÖrÜ à U0

n�m m exp n 1� r
r0

✓ ◆ �
� n r0

r

⇣ ⌘m
⇢ �

; (12) 

which is often called Buckingham potential (m à 6) but also Born-Mayer 
potential (m à 1) for two ions of dislike charges, in which case the potential 
parameters must be constrained to satisfy 

nU0r0

n� 1
à Q2

4πε0
; (13) 

where Q is the charge of one ion and ε0 the vacuum permittivity. Born- 
Mayer potentials may also contain dispersive interactions in addition to 
exponential repulsion and Coulomb potentials. For two like ions, there is no 
bound state and repulsion is dominated by Coulomb interactions at typical 
interionic distances.

Later, Buckingham [84] found that the repulsion between hydrogen 
atoms in the lowest triple state and that between helium atoms are better 
described when replacing the prefactor of the exponential term with an 
appropriate polynomial. He motivated this with theoretical results obtained 
using Heitler-London type approaches, which is in line with more recent 
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comparisons [85]. Thus, the term Buckingham potential may also refer to 
a potential, in which the constant prefactor to the exponential repulsion is 
replaced with a polynomial in r. Van Vleet et al. [86] provide 
a contemporary discussion on how to construct the polynomials.

3.2.1. Higher-order dispersion and induction
Dispersive interactions are not limited to the leading-order dipole-dipole 
interactions, yielding the 1=r6 attraction. For example, dipole-quadrupole 
interactions cause a correction of 

ΔUÖrÜ à �C8

r8 ; (14) 

while the quadrupole-quadrupole and the dipole-octopole interactions lead 
to corrections that asymptotically scale as 1=r10. Cipcigan et al. [87] recently 
summarized the hierarchy of dispersive interactions together with those 
resulting from electrostatic induction.

The most important correction to Coulomb interactions in ionic systems 
results from the large electrostatic, dipolar polarizability of anions, which 
was first considered by Rittner [88]. The energy gained by a dipole placed in 
an external electrostatic field E is ΔU1 à �p � E, while the on-site energy 
required to create it is ΔU2 à p2=Ö2αÜ, where α is the polarizability of the 
anion. The dipole adjusts itself so that ΔU1 á ΔU2 is minimized. This yields 
a correction of 

ΔUÖrÜ à � α0Q2

8πε0 r4 (15) 

to the Born-Mayer potential applied to a heteronuclear, diatomic molecule. 
Assuming bare Coulomb interactions, the polarizability of the cation is 
assumed to be negligible compared to that of the anion and α0 :à
α=Ö4πε0Ü has the unit of volume. As already recognized by Rittner [88], 
corrections to the correction in Eq. (15), arise due to the induction of the 
cation and the mutual induction of cation and anion. In addition, electro-
static field gradients induce quadrupoles and higher-order derivatives 
higher-order multipoles. Their incorporation may necessitate damping of 
the interactions [89,90] or further fine tuning of the on-site interaction 
between different multipoles beyond linear response to ensure 
a systematic improvements of the potential.

Rittner [88] found that adding this type of correction allowed him to 
reproduce important molecular properties of alkali halide molecules while 
assuming integer charges on the ions. He deemed Pauling’s criterion for the 
fraction of ionic character of a bond (dipole moment divided by bond length 
times elementary charge) false, because it fails to include the far-from- 
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negligible polarization deformation on the ions. Madden and Wilson [91] 
provided much ammunition in favor of Rittner’s conclusion by also con-
sidering crystalline structures of many ionic binaries.

It is important to note that the Rittner and related higher-order correc-
tions are not pairwise additive. This is because an additional charge or 
charge distribution would change the induced dipole and thereby its inter-
action with the first charge. As a consequence, polarizability in many-atom 
systems is generally not solved in closed form, as described in more detail in 
Sect. 4.2.

3.2.2. Damping interactions at short distances
Obviously, higher-order dispersion and induction only matters significantly 
at small interatomic distances at which point the charge distributions of the 
interacting atoms start to overlap, which leads to a reduction or damping of 
the interactions. To prevent artificially large attractions from occurring at 
small separations, pertinent terms of the potentials are multiplied with 
damping functions fnÖrÜ. They are generally constructed such that the over-
all potential goes linearly to zero with r at small r, while the damping 
function quickly approaches unity with increasing r. To this end, Tang 
and Toennies [89] proposed to replace a dispersive interaction scaling 
with 1=rn according to 

1
rn !

1
rn fnÖr=bÜ ; (16) 

where b is a parameter which depends on the nature of the two interacting 
atoms and potentially also on the index n, while 

fnÖxÜ à 1� ΓÖná 1; xÜ
n!

; (17) 

ΓÖná 1; xÜ being the incomplete Gamma function, which, in the case of 
a non-negative integer n, can be expressed as 

ΓÖná 1; xÜ à n!e�x
Xn

kà0

xk

k!
: (18) 

The Tang and Toennies damping function is supposedly the most widely 
used one.

Not only dispersive but also regular Coulomb interactions between 
charges or dipoles can be damped, rewind, should be damped with functions 
like that defined in Eq. (16) to reflect the finite extent of electronic shells and 
to avoid grossly exaggerated attraction at small separation. In fact, as early as 
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1962, Dalgarno [92] discussed damping, or, “shielding” as it was called at the 
time, in the framework of shell potentials accounting for atomic 
polarizability.

3.2.3. Electrostatic screening at large distances
When atoms approach each other much more closely than their typical 
nearest-neighbor spacing, as it can happen during high-energy ion bom-
bardment, it is more appropriate to assume the bare Coulomb repulsion, 
UCÖrÜ à Z1Z2e2=Ö4ε0rÜ between the nuclei as asymptotic reference rather 
than the exponential repulsion reflecting the large-r asymptotics. Here, Z1;2 
are the nuclear charges of the interacting atoms or ions. Due to the pro-
pensity of matter to be locally charge neutral, electrostatic interactions are 
screened at “large” distances, i.e. at distances approaching equilibrium bond 
lengths, as is also the case, for example, between charged colloids in an 
electrolyte. To lowest order, the bare Coulomb interaction in a charge- 
neutral system is screened with an exponential f ÖrÜ à expÖ�r=λÜ, where λ 
is called the screening length. The resulting potential UÖrÜ à f ÖrÜUCÖrÜ is 
known as the Yukawa potential [93].

Ziegler, Biersack, and Littmark (ZBL) [94] proposed an empirical screen-
ing function f ÖrÜ à ָÖr=λÜ with 

ָÖxÜ à 0:1818e�3:2x á 0:5099e�0:9423x á 0:2802e�0:4029x

á 0:02817e�0:2016x ; (19) 

where only the screening length λ à 0:46850 Å=ÖZ0:23
1 á Z0:23

2 Ü depends 
explicitly on the nuclear charges. ZBL may still be the most used short- 
range repulsion, despite reported improvements [95], which, however, lack 
the mentioning of specific functional forms.

In practice, it is necessary to switch between short and long-distance 
asymptotics to predict repulsion at intermediate r. This is commonly done 
through switching functions as discussed in the appendix of Ref. [96].

3.3. Combining rules for two-body potentials

Bragg [97] observed that the lattice constants of many crystals can be 
reproduced quite accurately when atomic radii are assigned to indivi-
dual elements and the assumption is made that two nearest-neighbors 
touch in ideal crystalline structures. This observation implies no rigor-
ous but an approximate constraint for how (two-body) potentials para-
meterized for individual elements can be combined to mixed 
interactions. An arsenal of propositions was made in that regard. The 
simplest and most wide spread for the Lennard-Jones potential are the 
Lorentz-Berthelot [98,99] rules. They take the arithmetic mean of the 
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length scale parameter σ, whereby Lorentz predated Bragg’s observa-
tions by 40 years, and, the geometric mean of the binding energies ✏
[98,99], expressed here using ✏ rather than U0, 

σAB à
σA á σB

2
(20) 

✏AB à
ÅÅÅÅÅÅÅÅÅ
✏A✏B
p

: (21) 

The major flaw of Lorentz-Berthelot is that it generally violates a rigorous 
result for the mixed dispersion coefficient, C6;AB :à 4✏AB=σ6

AB;which is 
given further below in Eq. (50). An apparently reasonable approximation 
to Eq. (50) for combined dispersion coefficient reads [100] 

C6;AB ⇡
2αA αB C6;AA C6;BB
α2

BC6;AA á α2
AC6;BB

; (22) 

where αX is the polarizability of atom or ion X, while the geometric mean ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
C6;AA C6;BB

p
merely provides an upper bound for C6;AB [100]. We abstain 

from reviewing combining rules not reproducing Eq. (22) or better motivated 
combining rules, other than Lorentz-Berthelot. Instead, we content ourselves 
noting that Tang and Toennis [101] found the potential depths and locations 
of hetero nuclear noble-gas molecules to be well reproduced when using their 
equations (4) and (5), which satisfy Eq. (22) from this work, as combining 
rules. We would expect that reasonable answers can also be obtained for 
closed-shell (united) atoms when using Eq. (22) in conjunction with the 
Lorentz rule, from where the prefactor for the 1=r12 repulsion can be deduced.

A better model for repulsion than that used by Mie [80] or Lennard-Jones 
[8] is the exponential repulsion from Born and Mayer [83], originally Slater 
[102], which we write here as 

UijÖrijÜ à Aij e�rij=σij ; (23) 

where Aij typically lies in the range of a few to several dozen keV [103]. 
Values for A and σ pertaining to our selected reference structure can be read 
off from Table. 1 by associating A with U0 expÖnÜ and σ with r0=n. Assuming 
that repulsion originates from he overlap of exponentially decaying charge 
densities yields the harmonic means for the length scale, 

σ�1
ij à

σ�1
ii á σ�1

jj

2
: (24) 

A standard assumption, similar to the Lorentz-Berthelot rule, is to apply 
a geometric mean for the energy prefactors, Aij à

ÅÅÅÅÅÅÅÅÅÅÅ
Aii Ajj

p
. Abrahamson 

[103] compiled a list for 1=σii and Aii for all neutral elements up to the 
atomic number 105.
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An alternative combining rule for the prefactors Aij was proposed by 
Smith [104] having in mind atoms or ions with noble-gas electronic con-
figuration. He argued that repulsion is an energy excess related to the 
deformation of the electron density caused by the Fermi principle. He 
treated that deformation in a way as if each of the two interacting atoms 
or ions were in contact with an infinitesimally thin but impenetrable wall, 
which is positioned a distance rijσii=Öσii á σjjÜ from atom i. The excess 
energy associated with each side of the wall can then be calculated from 
the pair repulsion. This nonrigorous, yet plausible model leads to the 
combining rule 

Aij à Aii
σij

σii

✓ ◆σii=Ö2σijÜ
Ajj

σij

σjj

✓ ◆σjj=Ö2σijÜ
: (25) 

An identical rule had already been found empirically by Gilbert [105] for 
alkali halide monomers a few years earlier. Besides proposing his semi- 
empirical explanation, Smith [104] added to that list various pairs consisting 
of noble gas atoms, metal ions, and halogen anions, each with a complete 
shell. Böhm and Ahlrichs [106] found the combining rule for Aij in Eq. (25) 
to be more accurate than others and further complemented the list of 
investigated pair repulsions to diatomic molecules beyond those consisting 
of atoms or ions with closed electron shell. Recent work [86], which is 
motivated by the analysis of electronic-charge density overlap between 
two atoms, proposes altered combining rules, in which σij is the geometric 
mean of σi and σj. In addition, more complicated mixing rules apply than 
those “derived” by Smith and the prefactors have a certain rij dependence.

Given its success, it might be in place to further comment on the argu-
ments leading to Eq. (25). First, it explains quite naturally that repulsion is 
not necessarily a pair-wise additive quantity. The electron distribution of 
a first atom is more easily squished by a second atom if there is no third 
atom already squishing the maltreated electron cloud of the first atom. The 
poor electrons simply have no more volume of refuge. Thus, the more atoms 
squeeze against a central atom, the larger the central atom should appear to 
be. Table 1 reflects this trend for single-component systems not only for the 
equilibrium lengths but also for σ à r0=n. It is particularly strong for the 
covalently bonded carbon atoms and still quite noticeable for copper. In 
fact, from own unpublished work on alkali metals, our impression is that the 
assumption of pairwise additive repulsion is particularly poor for small 
coordination numbers. Second, potentials adjusting atomic charges on the 
fly might want to include the effect that this charge has on the atomic size 
and thus on its repulsive interaction. Neither of these two points appears to 
have attracted the attention it deserves.
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3.4. Funky two-body potentials

Simple, computationally lean potentials generally lead to simple beha-
vior without producing the intricate dynamics of highly viscous liquids 
or the complex structure of amorphous solids. The phase diagram of 
Lennard-Jonesium, like that of noble gas atoms other than helium 
consists of a closed-packed structure at low temperature, a low- 
viscosity fluid phase in a narrow temperature range at (what would be 
characteristic for) ambient pressure, and the gas phase at large tem-
perature. While nature manages to produce elements with extended 
liquid phases at moderate pressure and temperature, like mercury or 
gallium, they do not become highly viscous. Even binaries often do not 
form highly viscous fluids and instead either phase separate or crystal-
lize upon cooling from the liquid phase. Notable exceptions to this rule 
at elevated temperature are SiO2 and CuZr, which both resist crystal-
lization upon cooling to a significant degree while being describable 
with relatively simple potentials, e.g. by the silica potential proposed by 
van Beest, Kramer, and van Santen (BKS) [107] or by the embedded- 
atom model (EAM) for CuZr [108–110]. Unfortunately, BKS necessi-
tates long-range electrostatic interactions to be evaluated while EAM 
lacks pairwise additivity, even if it can be computed at the cost of order 
OÖZlocNÜ, like pairwise additive potentials, where Zloc is the number of 
atoms within the cutoff radius and N the number of atoms.

To study processes taking place on times exceeding vibrational periods by 
several decades and to address generic questions typical for disordered solids 
or highly viscous fluids, it can be advantageous to work with potentials 
producing the observed macroscopic behavior while being computationally 
as lean as possible. Such potentials may not be representative of any real 
material, but, so the hope, produce the correct qualitative behavior for the 
right reason. In the worst case, they provide a model for what nature could 
be and thereby allow theories for the fracture of disordered solids [111,112], 
the supercooling of liquids [113,114] or the rigidity of glasses [115,116] to be 
tested. Moreover, for many of the frequently qualitative questions to be 
answered, it can be advisable to sacrifice accuracy in the interactions rather 
than to make compromises in system size or cooling rate. For example, the 
anomaly of the specific heat in a bulk-metallic glass former can have serious 
artifacts when the linear system size is not at least twice the density correla-
tion length [117]. Likewise, determining the proper scaling for the vibra-
tional density of states with frequency in amorphous solids requires the use 
of large system sizes and long simulation times [118–121] and thereby the 
use of lean potentials.
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The common recipe to construct simple potentials keeping systems from 
crystallizing quickly is to build frustration into them. Dzugutov [122] 
achieved this by introducing a hump in the pair potential. Its functional 
form is given by 

UÖrÜ à A r�m � BÖ Üec=Ör�aÜΘÖr � aÜ á Bed=Ör�bÜΘÖr � dÜ ; (26) 

where the parameters A, B, a, b, and m used for Figure 5 are those from 
the original work. The most important feature of the Dzugatov potential 
certainly is that the hump is located near next-nearest neighbors spa-
cings in a closed-packed structure if nearest neighbors settle in the 
vicinity of the energy minimum. As a consequence, atoms like to 
adopt local icosahedral structures, which can arrange similar to the 
order found in quasi crystals lacking long-range order, though large 
system sizes and small cooling rates may be required to prevent the 
crystallization into a bcc structure [123].

For mixtures of particles, frustration can be encoded to some degree 
through artificial combining rules in Lennard-Jones binaries, as for exam-
ple, by setting all σAA à 1:2 while choosing σAA à 1:2, σAB à 1:1, σBB à 1 
[113]. This first attempt by Wahnström is quite prone to crystallization as 
revealed by Kob and Anderson [114]. In an attempt to mimic a Stillinger- 
Weber potential designed to mimic amorphous Ni 80 P 20 [124], they 
suggested a binary Lennard-Jones potential in which dislike atoms have 
a large binding energy while being incompatible in size: ✏AA à 1, ✏BB à 0:5, 
σAA à 1:0, and σAA à 1:0, σAB à 0:8, and σBB à 0:88 [114]. To further 
reduce the risk of having unnoticed or even worse noticeable crystalline 
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Figure 5. Two examples of funky pair potentials, UÖrÜ, normalized to their binding energy U0 
and their bond distance r0. The solid blue line represents a Dazugutov potential, which was 
constructed to make a mono-atomic system avoid crystallization. Circles depict experimental 
results on the pair potential of the chromium dimer, Cr2. Dashed lines are Morse potential fits to 
the energy minimum.
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reference phases, continuous distributions of Lennard-Jones radii can be 
used [115,116]. For a comparison of different glass-forming models, the 
reader is referred to a recent work by Ninarello, Berthier, and 
Coslovich [125].

We note in passing that pair potentials with humps similar to the 
one present in the Dzugutov potential are occasionally used to model 
mono-atomic bcc phases, in particular that of iron. This is because the 
third neighbor shell in bcc sits at 

ÅÅÅÅÅÅÅÅÅÅ
11=3

p
⇡ 1:91 times the radius of 

the nearest-neighbor shell and still 
ÅÅÅÅÅÅÅÅÅÅ
11=4

p
⇡ 1:65 times that of 

the second nearest-neighbor shell. Thus the first two shells comforta-
bly fit into the potential well while the third shell has to pay no 
penalty. In contrast to bcc, the next-nearest neighbor shell in fcc or 
hcp would be utmost unhappy.

Interestingly, real pair potentials of bcc-forming metals can deviate sub-
stantially from the Morse potential, as is the case, for example for the 
chromium dimer, Cr2, whose pair potential is included in Figure 5 and 
which appears to be challenging to compute accurately even with the most 
advanced post-Hartree Fock methods [126]. Despite the funky shape of 
“exact” pair potentials of some transition metal dimers, they still do not 
allow quantitative predictions to be made for elemental bcc metals, because 
real interactions simply happen not to be pairwise additive. It would lead to 
a sometimes substantial overestimation of the shear modulus, whereby 
dislocations are artificially suppressed in crystalline materials (their energy 
depends predominantly on the shear elastic constants) and thus brittle 
fracture be enhanced. Pair potentials also lack the important effect that 
a (metallic) bond between two atoms is strengthened when at least one of 
the two reduces its coordination as it would happen in a propagating crack. 
This lack biases material behavior toward brittleness.

Finally, pair potentials with a hump can also be designed to mimic 
chemical reactions as they occur, for example, during polymeric chemical 
reactions of step growth [127] and also radical-reaction based chain-growth 
[128]. It remains a philosophical question if such potentials should be 
deemed reactive, since the notion of a chemical reaction traditionally 
requires electron transfer or hybridization changes resulting in altered 
pair interaction, as is induced, for example between two hydrogen atoms 
due to the presence of an oxygen atom. Pair potentials can mimic neither 
one by definition so that they do not classify as reactive, in our opinion. 
Nonetheless, a well-designed bump-potential can reproduce steric effects 
while reproducing the large energy barrier that needs to be overcome for 
two monomers to bond, whereby the complex interplay of boundary con-
dition, chain relaxation, and chain growth can be studied.
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3.5. Relating potentials and elastic properties

Elastic properties are among the most important properties of solids. Any 
potential should therefore be tested for its ability to reproduce the elastic 
tensor of crystalline references. Ideally, they include not only thermodyna-
mically stable but also hypothetical structures or finite stress to enhance 
transferability. Non-existing reference data can be obtained from DFT or 
related methods. One of the problems surfacing quickly is that elastic 
constants are not uniquely defined, except at zero stress and temperature. 
Different definitions lead to deviations of similar order as the external stress 
[129–136]. This can matter, for example, under geophysical conditions, so 
that properly converting between different elastic tensors may be critical, 
which we will come back to briefly at the end of this section.

To set the stage for many of the calculations throughout this article, we 
briefly review central aspects of the theory of elasticity, while deriving the 
Cauchy relations, whose violation has been and remains central to the 
development of potentials. We attempted our summary to be more con-
densed than other texts, while being palatable for readers not familiar with 
the topic.

We assume a deformation of a crystal, in which atomic positions after 
deformation are rnα à Öδαβ á uαβÜr0

nβ á χnα. Here, atoms are enumerated by 
n, Cartesian components are represented by Greek letters, and the Einstein 
summation convention applies. The upper index 0 in r0

nα denotes an (equi-
librium) position in a reference structure, the tensor u is the macroscopic 
displacement gradient, while χnα is a local atomic displacement. The defor-
mation is affine if all χnα vanish. The Eulerian strain tensor ε is the symme-
trized displacement gradient, εαβ à Öuαβ á uβαÜ=2. From this definition, the 
squared distance between atoms i and j, Sij :à rijαrijα, after an affine defor-
mation can be written as 

Sij à δαβ á 2ηαβ

⇣ ⌘
r0

ijαr0
ijβ ; (27) 

where ηαβ :à Öuαβ á uβα á uγαuγβÜ=2 à εαβ á εαγεγβ=2 is called the 
Lagrangian strain tensor [137]. Other strain tensors exist but are not 
relevant here.

Stress tensor elements are generally defined as the first derivative of 
a thermodynamic potential w.r.t. a strain tensor element and normalized 
to the volume of the reference, e.g. 

σαβ :à 1
v0

pa

@Upa

@ηαβ

�����
ηà0

; (28) 
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is called a Cauchy stress. Here, we have normalized energies and volumes 
per atom (pa). Note that the evaluation of the derivative at η à 0 only means 
that the derivative is taken at the reference but not that the stress disappears. 
Other stress tensor definitions exist, but they only differ when evaluated at 
nonzero or finite strain. For example, Eq. (28) defines the second Piola- 
Kirchhoff stress, if evaluated at nonzero η.

For systems interacting through (central) pair potentials, σαβ can be easily 
computed. To this end, we first reexpress U2ÖrijÜ as ~U2ÖSijÜ so that 

σαβ à
1

v0
pa

X

j

~U 02ÖSijÜr0
ijαr0

ijβ ; (29) 

where the prime in ~U0 indicates the first derivative. For simple lattices under 
isotropic stress, the summation can be sorted according to neighbor shells, 
where s à 0 denotes the nearest-neighbor shell, s à 1 the next nearest- 
neighbor shell, and so on. Thus, 

σαβ à
1

2v0
pa

X

s
asU 02ÖasÜναβ

s : (30) 

Here as is the distance between a “central” atom i and an atom j in shell s and 
ναβ

s is the second rank shell tensor, whose elements are defined as 

ναβ
s à

X

j2shell s

rijα

as

rijβ

as
: (31) 

For sufficiently symmetric shell structures, the second-rank shell tensor 
simply turns out to be Zs=D, where Zs is the number of atoms in neighbor 
shell s and D the spatial dimension [138]. In static equilibrium, the external 
hydrostatic pressure is nothing but p à �σαα=D.

Elastic constants are defined as the change of stress with strain, i.e. 
as second-order derivative of a thermodynamic potential w.r.t. to strain. 
This implies that results differ at non-zero stress for Eularian and 
Lagrangian strain tensors, see also Eq. (38). Moreover, it matters if atomic 
reference positions, i.e. the Wykhoff positions of atoms in a unit cell are 
kept fixed or change with strain, as could be expressed by assuming the χnα 
to depend on strain whenever applicable. Such structural non-affine 
relaxation can happen when atomic sites lack inversion symmetry, as 
when shearing a diamond structure, or, as an extreme example, amor-
phous materials [139].
In-silico, it is an easy matter to constrain all χnα to zero, experimentally less 
so. Elastic constants defined for χnα;0 are marked with an upper zero. In 
that case, taking the derivative of the two sides in Eq. (29) simply yields 
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C0
αβγδ à

2
v0

pa

X

j

~U 002ÖSijÜr0
ijαr0

ijβr0
ijγr0

ijδ : (32) 

By introducing the fourth-rank shell tensor, 

ναβγδ
s :à

X

j2s

r0
ij;α

r0
ij

r0
ij;β

r0
ij

r0
ij;γ

r0
ij

r0
ij;δ

r0
ij
: (33) 

and by using 4S2 ~U 002ÖSÜ à fr2U002ÖrÜ � rU02ÖrÜg, the elastic tensor reads 

C0
αβγδ à

1
2v0

pa

X

s
fa2

s U 002ÖasÜ � asU02ÖasÜgναβγδ
s à 1

2v0
pa

X

s
a2

s kÖasÜναβγδ
s :

(34) 

Structural relaxation always reduces the energy so that C0
44 of diamond 

would violate the Cauchy relation even more than already evidenced in 
Figure 2.

The elastic tensor is invariant w.r.t. to any permutation of its indices, 
including for example, C1122 à C1212, or, in Voigt notation C12 à C66. It also 
includes implicitly the recipe for what elastic tensor obeys the Cauchy 
relations at finite hydrostatic pressure p, namely the second-order derivative 
of the internal energy w.r.t. the Lagrangian strain. However, most simple 
crystals violate it as is obvious from Figure 2.

Equation (33) allows the elastic tensor of simple crystals obeying pair 
potentials to be computed in a straightforward fashion, in particular when 
knowing the fourth-rank shell tensor. Its independent components are 
compiled in Tab. 2 for selected lattices along with other information useful 
to quickly compute properties of simple crystals.

For short-range potentials only the first two shells contribute substan-
tially to the elastic tensors. Using the information collected in this section so 
far, we find for fcc, bcc, and sc, using Voigt instead of tensor notation, 

C11 ⇡
1
a0

ÅÅÅ
2
p

k0 á 2
ÅÅÅ
2
p

k1 ÖfccÜ
k0=

ÅÅÅ
3
p
á

ÅÅÅ
3
p

k1 ÖbccÜ
k0 á 2k1 ÖscÜ

8
<

: (35a) 

C12 ⇡
1
a0

k0=
ÅÅÅ
2
p

ÖfccÜ
k0=

ÅÅÅ
3
p

ÖbccÜ
k1 ÖscÜ:

8
<

: (35b) 

with the effective shell spring constant 

ks :à kÖasÜ à U 00ÖasÜ � U 0ÖasÜ=as : (36) 
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Note that for fcc, bcc and sc, Cαβ;C0
αβ since their primitive unit cell contains 

only a single atom.
To obtain the relation between different elastic tensor definitions, it is 

useful to deduce from the definition of the Lagrangian strain that 

@ηαβ

@εγδ
à δαγδβδ á

1
2

δαγεδβ á εαγδβδ
� �

: (37) 

Thus, for a second-order derivative of an arbitrary function f , it follows that 

@2f
@εαβ@εγδ

à @2f
@ηαβ@ηγδ

á @f
@ηγα

δβδ : (38) 

The differentiation rule of Eq. (38) also allows one to determine the second- 
order derivative of the term pv=v0, where p is a constant (external) pressure. 
Given the relative change of a volume element, Δv=v0 à εαα á
εααεββ � εαβεβα
� �

=2á OÖε3Ü and using Voigt notation, ΔCij :à
pÖ@2v=@ηi@ηjÜ=v0 can be deduced to be 

ΔCij à pΔij (39) 

with Δii à �1 for all i, Δijfii à 1 for i and j both  3, and else Δij à 0.
Finally, we note that for a solid to be stable, the elastic tensor must be 

positive definite, which leads to the Born stability criteria [140,141], e.g. 
C11 !C12, C12 ! � C11=2, and C44 ! 0 in cubic materials. At constant 
pressure, Cij á ΔCij must be positive definite. For a more general discus-
sion on how imposed boundary conditions affect mechanical stability, we 
refer to an instructive work by Wang et al. [135], who studied a simple 
model for gold.

Table 2. Useful dimensionless numbers for selected crystal systems using standard orientation 
of the lattices: simple cubic (sc), face-centered cubic (fcc), body-centered cubic (bcc), diamond 
cubic (dc), and hexagonal close packed (hcp). Additional elements for hcp are ν1133

0 =Z0 à 1=18, 
ν3333

0 =Z0 à 2=9, and ν112
0 =Z0 à ⌥1=Ö24

ÅÅÅ
3
p
Ü, the negative sign applies to A-layer atoms and the 

negative for B-layer atoms if B is shifted by Ö1=2; 1=
ÅÅÅÅÅ
12
p

;
ÅÅÅÅÅÅÅ
2=3

p
Ü w.r.t. A. In diamond, each 

atom on (0,0,0) and (1/4,1/4,1/4) contribute ν123
0 =Z0 à 1=Ö3

ÅÅÅ
3
p
Ü and ν123

0 =Z0 à �1=Ö3
ÅÅÅ
3
p
Ü, 

respectively.
Z0 Z1 a1=a0 v pa=a3

0 ν11
0 =Z0 ν1111

0 =Z0 ν1122
0 =Z0

sc 6 12
ÅÅÅ
2
p

1 1/3 1/3 0
fcc 12 6

ÅÅÅ
2
p

1=
ÅÅÅ
2
p

1/3 1/6 1/12
bcc 8 6 2=

ÅÅÅ
3
p

4=
ÅÅÅÅÅ
27
p

1/3 1/9 1/9
dc 4 12

ÅÅÅÅÅÅÅ
8=3

p
8=

ÅÅÅÅÅ
27
p

1/3 1/9 1/9
hcp 12 6

ÅÅÅ
2
p

1=
ÅÅÅ
2
p

1/3 5/24 5/72
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4. Many-body potentials for closed-shell systems

This section focuses on the description of many-body effects in systems 
composed of atoms and ions in which the constituents can be said to have 
a closed electron shell. Paradigms are noble gases and alkali metal halides, 
however, many of the methods and insights conveyed here pertain to 
a broader context such as valence force fields. The central goal of this section 
is to highlight the role that atomic dipoles play in the interaction between 
atoms. These dipoles may originate from quantum mechanical ground-state 
fluctuations or be induced by an electrostatic field, which arises, for exam-
ple, on a chlorine atom in rock salt due to a lattice distortion breaking the 
local inversion symmetry.

Incorporating many-body effects of atomic dipoles—as well as 
higher-order electrostatic multipoles, which are somewhat meant to 
be referred to implicitly whenever the term dipole is mentioned—can 
be achieved in many different ways. For neutral atoms, their effect can 
be incorporated into potentials in the spirit of the expansion of Eq. 
(1). However, as soon as ions linger around, it is more efficient to 
model the dipoles explicitly. This can be done either by placing 
a formal dipole on the atom, or, by introducing a Drude model, that 
is, by coupling the center of mass of the displaced electron shell with 
a spring to a nucleus, or, to a given interaction site in a molecule. 
Finally, the dipole can be treated either classically, or, quantum 
mechanically. The latter appears to be a promising route to model 
many-body dispersion quite accurately, albeit at a large computational 
cost. For reasons of completeness, we state that Drude models would 
better be named after Lorentz, since Drude [142] considered free 
electrons in a metal, while Lorentz [143] attached (dissipative) springs 
between electrons and nuclei to model the optical response of bound 
charges in insulating matter.

4.1. Explicit many-body dispersion

Axilrod and Teller [144] and independently Muto [145] (ATM) extended 
the second-order perturbative treatment of the quantum dipole fluctuations 
leading to the leading-order 1=r6 London forces to third-order perturbation 
theory. The resulting three-body ATM potential reads (for three like atoms) 

UATMÖfrgÜ à C9
X

i< j< k

1á 3 cos#ijk cos#jik cos#kij

r3
ij r3

jk r3
ki

; (40) 

where the sum runs over all unique triangles formed by three atoms i-j-k. 
Interior angles of the triangle formed by the three atoms i-j-k are denoted by 
the Greek letter #ijk, where the first index denotes the atom at the apex of the 
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angle. The cosines can be computed straightforwardly from the individual 
bond lengths, cos#ijk à Ör2

ij á r2
ik � r2

jkÜ=Ö2rijrikÜ. A frequently used approx-
imation for (mixed) dispersion coefficients is obtained from geometric 
averages in atomic units, i.e. C9;ABC à

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
C6;AC6;BC6;C

p
=

ÅÅÅÅ
H
p

, where A, B, C 
are element specific and H is 1 Hartree. More rigorous results can be 
deduced from the Casimir-Ponder integral as described in Refs. [146,147].

The usual course of action when using ATM in conjunction with LJ 
or Buckingham is to explore improvements on predicted properties. 
Traditionally, ATM corrections to the binding energy for noble gas 
crystals like argon are estimated to be of order 10% [49]. For very 
polarizable systems, they can be much larger. Von Lilienfeld and 
Tkatchenko [146] found them to account for 50% of the binding 
between two graphene sheets. In addition, ATM interactions can correct 
for systematic deficiencies in the elastic and vibrational properties that 
cannot be overcome in the realm of pair potentials [148]. We see it as 
beneficial to analyze UATM as an independent quantity in terms of 
a lattice ATM constant, which can be defined in analogy to the 
Madelung constant as 

αATM :à a9
0

X

1< j< k

1á 3 cos γ1 cos γj cos γk

r3
1jr3

jkr3
k1

(41) 

We obtain αATM ⇡ 57:548 for an ideal fcc crystal from which one sixth can be 
assigned to each atom. For hcp, we obtain αATM ⇡ 57:563, which can topple 
the balance in favor of fcc. The differences between these two numbers is 
small, yet, larger than between the results for C6, i.e. C6 ⇡ 14:4538, C12 ⇡
12:1319 for fcc, versus, C6 ⇡ 14:4545, C12 ⇡ 12:1323. In order for αATM to be 
larger for hcp than for fcc, interactions beyond next-nearest neighbors must 
be included. Unfortunately, we did not manage to find recent literature results 
on the simple-to-compute ATM lattice sums beyond relatively rough, initial 
estimates by Axilrod [149]. Nonetheless, different authors [150,151] have 
previously concluded that three-body dispersion favors fcc over hcp, although 
the corrections due to nuclear quantum fluctuations appears to be substan-
tially more important in that regard [152].

4.2. Classical polarizable potentials

The electrostatic field on a central atom or molecule is produced by other 
charges, dipoles, or higher-order multipoles. This leads to a hierarchy of 
inductive interactions [90], which we have already touched upon in Sect. 
3.2.1. It contains the 1=r4 attraction between a charge and an induced dipole. 
Next in line is the (asymptotic) 1=r6 attraction between a permanent dipole 
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and an induced dipole or that between a charge and an induced quadrupole. 
Unfortunately, the interactions related to induced dipoles or induced higher- 
order multipoles, which will be ignored for the most part in the following, are 
not pairwise additive. Two like charges placed at ⌃ Δr from an atom will not 
induce a dipole on that atom and thus not lead to twice the energy gained if 
only one of the two charges were present.

Since adjacent existing (static, molecular) dipoles try to align themselves 
to an external electrostatic field in an attempt to minimize the potential 
energy, induced dipoles tend to be parallel to pre-existing static dipoles. This 
effect is well known to increase the mean dipole moment of water molecules 
from 1.85 D in the gas phase to approximately 2.7 D in the liquid, whereby 
dipole-dipole interactions essentially double.

The polarizability of a homogeneous medium having cubic or higher 
symmetry is stated in terms of its dielectric constant εr, which implicitly 
reflects the feedback that dipoles have on each other. In atomic or molecular 
systems, εr can be well estimated through the Clausius-Mossotti relation [153] 

εr � 1
εr á 2

à
X

i

ρiαi
3ε0

; (42) 

where ρi is the number density of species i and αi its (orientationally 
averaged) polarizability. Once the right-hand side of Eq. (42) is greater or 
equal one, εr is no longer a finite positive number so that the model has 
reached its physically meaningful limit. The dipoles “want” to grow ad 
infinitum, at which point the system becomes metallic. The underlying 
polarizable potential needs to be extended to either suppress this so-called 
polarization catastrophe, e.g. by shielding the Coulomb interaction at small 
distances [89], or, to actually allow the system to become conducting. In 
advanced shell potentials being a compromise between polarizable and 
charge-transfer models, this can be achieved by not constraining an electron 
cloud to one particular atom [154].

When modeling charged or polar systems by atomistic means, one would 
certainly want to reproduce the dielectric response function of a medium 
correctly, e.g. when simulating the condensation of water on a surface [155], 
the Helmholtz double layer on an electrode [156,157], or the damped 
Coulomb interaction of charged colloids in water. For the simulation of 
simple geometries and homogeneous media, it may be possible to achieve 
this with effective potentials [158] or with the concept of induced mirror 
charges [159]. However, many important problems lack the symmetry or 
isotropy required to pursue such approaches so that the dielectric response 
has to be solved on the fly. This can be achieved with molecular approaches 
encoding the polarizability into the potential energy surface.
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One possibility is to induce ideal dipoles or higher-order multipoles on 
atoms or specific interaction sites in a molecule [160,161]. This is done by 
adding an energy contribution for each inducible multipole pi. The usual 
interatomic potential UÖfRgÜ is the one that minimizes UÖfRg; fpgÜ, e.g. 

UÖfRgÜ à min
fpg

UÖfRg; fpgÜ; (43) 

where 

UÖfRg; fpgÜ à UsrÖfRgÜ á UCÖfRg; fpgÜ á
X

i

p2
i

2αi
_ (44) 

with respect to the dipoles. In Eq. (44), contributions to the short-range (sr) 
interaction are separated from those due to Coulomb (C) interactions, 
which may contain contributions from static dipoles (for molecular rather 
than atomic simulation) in addition to those from point charges. Since, Eq. 
(44) is a second-order polynomial in the induced dipoles, a well-defined 
minimum exists as long as the Hessian related to the dipoles is positive 
definite. A brute-force inversion of the Hessian to yield the exact minimum 
is generally inadvisable. Alternatives are conventional minimization techni-
ques, such as those based on conjugate gradients [162] or extended 
Lagrangians [163,164]. In the latter case, the dipoles, or other adjustable 
degrees of freedom such as those describing the shape of the periodically 
repeated system [163] or prefactors to electronic wavefunctions [164], are 
assigned an inertia and propagated and relaxed along with the atomic 
coordinates. It is beyond the scope of this review to discuss the pros and 
cons of extended Lagrangians in detail. It suffices to say that their imple-
mentation is relatively simple. However, they introduce an effective delay on 
the molecular dynamics [165]. In addition, relaxation to the energy mini-
mum can be slow when the Hessian has strongly differing eigenvalues, 
which automatically happens for large εr. Then, the dipolar response func-
tions are “stiff” at small length scales but “soft” at the continuum scale.

One disadvantage of placing ideal dipoles on atoms or ions is that the 
evaluation of Coulomb interactions is substantially complicated, even if 
solutions exist to include their effect into the (fast) Ewald summation 
[166]. Another deficiency is that higher-order multipoles are ignored that 
are generated when an electron cloud displaces with respect to a nucleus. 
These drawbacks can be remedied with Drude particles, or “Drudes”, in 
which a fixed Drude charge qD is coupled harmonically with a spring 
constant kD to an atom or ion, to which a charge � qD is added [167– 
169]. The last summand on the r.h.s. of Eq. (44) must then be replaced with P

i kD;iu2
i =2, where ui is the displacement of one Drude charge w.r.t. the 

atom or interaction site that it is bonded to. On-site Coulomb interactions 
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between all charges on the Drude, which despite similar spelling is not to be 
confused with The Dude from The Big Lebowski, must be switched off. 
Minimization of the total energy w.r.t. to the Drude displacements can be 
done in a similar fashion as for ideal dipoles.

In order for the Drude to reproduce the correct polarizability, the relation 

α à q2
D=kD (45) 

must be obeyed. The limiting case of ideal dipoles is obtained for qD; kD !
1 while keeping α constant. With an appropriate choice of kD and sign for 
qD, the correct quadrupolar induction of a spherically symmetric Drude can 
be matched to a homogeneous field. Traditionally, the three independent 
parameters of Drude oscillators, which in addition to qD and kD are also 
assigned an inertia or mass mD, were chosen to best match the frequency 
dependence of the dielectric constant at high frequencies [167]. Ideally, 
those values would be close to results obtained from a fit to accurate 
reference data on forces and energies, for which kD and possibly even qD 
are treated as adjustable parameters. Large discrepancies between different 
parametrization procedures should probably be seen as a sign that some-
thing is missing or wrong with the potential.

A stringent test for the correctness but also for the relevance of 
dipolar polarizability can be obtained when comparing force-field- 
based infrared absorption spectra to reliable reference data. For exam-
ple, in the case of amorphous silica, obtaining the correct number, 
positions, and intensities of peaks requires the polarizability of the 
oxygen atoms to be included [170] (Figure 6a). Accounting for electro-
static induction also appears necessary to accurately reproduce bond- 
angle distributions in silica and related systems [171]. While global 
bond-angle histograms may seem fine for pair potentials, deviations 
between symmetry-specific angles in crystalline structures from the 
ideal tetrahedral bond angle have the wrong sign for the most com-
monly used SiO2 pair potential [107] but the correct sign and magni-
tude for the polarizable Tangney-Scandolo potential [171,172].

The incorporation of dipolar polarizability is particularly crucial for 
structures in which highly polarizable (united) atoms or ions, most notably 
anions, are located in sites deviating strongly from inversion symmetry. This 
concerns in particular oxygen whenever it is two-coordinated, as it is in 
water, but also in low-temperature tetrahedral network formers like silica. If 
competing local orders exist, neglecting the polarizability of anions will 
artificially favor the order with the smaller deviation from inversion sym-
metry, because the anion is shorn of its ability to reduce its energy in the 
larger electrostatic field of the symmetry-broken phase.
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Including dipolar polarizability can also be required to describe macro-
scopic structural changes occurring during the transition between high- and 
low-symmetry phases in a qualitatively correct fashion, as is the case for the 
α� β transition in quartz. Using pair potentials, the c=a ratio shows no 
anomaly as a function of temperature at the transition temperature. For 
charge-transfer potentials, the slope of the c=a ratio changes at the transition 
temperature, while it is discontinuous, as in experiment, when dipolar 
polarizability on oxygen is added to the pair potential [172] (Figure 6b). 
This discussion may show that the analysis of phase transformations can 
benefit the validation of potentials, most notably polarizable potentials, even 
if applications will evolve primarily around liquid or amorphous phases.

An affine deformation of a highly symmetric ionic crystal, as for example, 
rocksalt (B1) or cesium chloride (B2), does not lead to an electrostatic field 
on a central lattice position created by the atoms residing on other positions. 
Thus, the central atom does not develop a dipole. However, a non-isotropic 
deformation, e.g. a uniaxial strain, can reduce the cubic symmetry, whereby 
the charge density on the anion may develop a quadrupole moment. 
Consequently, unlike dipolar polarizability, quadrupolar polarizability can 
induce a Cauchy violation in the said crystals, which is why it can be said to 
be more important than dipolar polarizability, at least from a continuum- 
mechanics point of view. Madden, Wilson, and coworkers demonstrated 
that inclusion of quadrupolar polarizability can substantially increase the 

Figure 6. Influence of polarizability on properties of SiO2. (a) Infrared absorption spectrum of 
amorphous SiO2 (silica) computed one time with a rigid, fixed-charge ion model (dashed line) 
and one time with a dipol-polarizable anion (solid line). The polarizable model matches 
qualitatively the experimental results shown in the inset. (b) c=a ratio of crystalline SiO2 (quartz) 
computed with the rigid ion potentials of van Beest, Kramer and van Santen (BKS) [107], the 
fluctuating-charge potential of Demiralp, Çaᑈin and Goddard after modifying parameters 
(mDCG) [173], and the polarizable force field of Tangney and Scandolo (TS) [171]. Only the 
polarizable force field reproduces the c=a anomaly at the α-β-quartz transition with tempera-
ture Ttr. (a) is reprinted with permission from Wilson, M., Madden, P. A., Hemmati, M., and 
Angell, C. A. Phys. Rev. Lett. 77, 4023 (1996) (Ref. [170]. Copyright (1996) by the American 
Physical Society. (b) is reprinted from Herzbach, D., Binder, K. and M. H. Müser, J. Chem. Phys. 
123, 124711 (2005) (Ref. [172]. with the permission of AIP Publishing.
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agreement between experimental and simulation results, at least in the case 
of simple ionic systems like AgCl [161] or MgO [174]. An important aspect 
of their work [174] is that they managed to gauge adjustable parameters 
independently from one another, even those describing a charge-density 
change on an anion due to electrostatic polarization from those being 
caused by short-range repulsion.

4.3. Quantum-Drude oscillators

The starting point for the description of dispersive interactions are two, or 
more, isolated atoms, described by their free-atom Hamiltonians ĤÖ1;2Ü0 . The 
atoms interact through their dipoles p1;2 via fp1 � p2r2

12 � 3Öp1 � r12ÜÖp2 �
r12Üg=Ö4πε0r5

12Ü plus potentially through higher-order multipoles. Second- 
order perturbation theory then leads to a pairwise-additive 1=r6

12 interac-
tions between the atoms.

Asymptotic 1=r6 interactions are also obtained when replacing the atomic 
Hamiltonians with quantized Drude oscillators [90,175,176], as will be 
shown here below. Their three, free parameters per atom, qD, kD, and mD 
can be chosen to match the correct polarizability αD à q2

D=kD and leading- 
order dispersive coefficient C6, which allows dispersive and inductive inter-
actions to be treated on a common footing. The justified hope is that higher- 
order and many-body dispersive interactions can be mimicked reasonably 
well simultaneously by properly selecting the third remaining parameter 
[87]. If the nucleus is also quantized, mD must be replaced with a reduced 
mass μD.

The Hamiltonians of two identical, three-dimensional quantum Drudes 
can be decoupled into three pairs with 

Ĥk à
X2

ià1

p̂2
ki

2μD
á kD

2
u2

ki

✓ ◆
á gα

4πε0

q2
Duk1uk2

r3
k12

: (46) 

The parameters gk (k à 1; . . . ; 3, no summation convention) take the values 
1 or � 2 depending on whether the displacements u1;2 are orthogonal or 
parallel to r12. The oscillators can be decoupled further through the trans-
formation uk⌃ à Öuk1 ⌃ uk2Ü=

ÅÅÅ
2
p

leading to three isolated oscillators pairs 
described by Hamiltonians of the form 

Ĥk⌃ à
p̂2
⌃

2μD
á 1

2
kD ⌃

gk
4πε0

q2
D

r3
k12

✓ ◆
u2

k⌃ : (47) 

In leading order, their combined excess ground-state energy w.r.t. that of 
two uncoupled oscillators, U0 à �hωD=2 with ωD à

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
kD=μD

p
per free quan-

tum Drude pair is 
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ΔUk0Ör12Ü à �
�hωD

8
gk q2

D
4πε0kD

✓ ◆2 1
r6

12
: (48) 

Adding up the three Drude pairs, using α0 à q2
D=Ö4πε0kDÜ, and repeating 

the entire exercise for potentially dislike Drudes, A and B, then yields, 

C6;AB à
3�h
2

α0Aα0BωAωB
ωA á ωB

; (49) 

which is the same combination rule as Eq. (22). Using the true atomic 
reference Hamiltonians and placing the dimer on the z-axis, the correct 
mixed dispersion coefficient reads [177] 

C6;AB à 6
e

4πε0

✓ ◆2 X
0

nA;nB

jz0 nA j
2jz0 nB j

2

EÖAÜnA � EÖAÜ0 á EÖBÜnB � EÖBÜ0

; (50) 

where z0 n is the matrix element h0jzjni of an atom and where the primed 
sum indicates that at least one of the two quantum numbers nA and nB must 
differ from zero.

Typical parametrizations of quantum Drudes [90] yield �hωD of order 0.5 H 
to 1 H for hydrogen and noble gas atoms as well as for small, closed-shell 
molecules, qD=e in between 0.7 and 1.4, and mD=me from 0.1 to 0.6. Since 
a regular quantum Drude is fully defined by three parameters, many terms 
related to higher-order polarizability αl (l à 1, dipole, 2 = quadrupole, 3 = octu-
pole) are constrained to take fixed ratios. Some of them are given by [87] 

ÅÅÅÅÅ
20
9

r
α2ÅÅÅÅÅÅÅÅÅα1α3
p à 1ÖpolarizationÜ (51a) 

ÅÅÅÅÅ
49
40

r
C8ÅÅÅÅÅÅÅÅÅÅÅÅ

C6C10
p à 1ÖdispersionÜ (51b) 

C6α1

4C9
à 1ÖmixedÜ : (51c) 

Figure 7 reveals that these ratios tend to reproduce experimental results 
within 10% error.

Once a quantum Drude model is defined, various strategies exist to 
deduce the energy and interatomic forces following from it. Brute-force 
diagonalization is not advisable for reasons of computational efficiency but 
also because the model is no longer quadratic in the Drude displacements, as 
soon as they seize to be negligible compared to interatomic distances, i.e. at 
typical condensed-phase, nearest-neighbor spacings. Moreover, any solu-
tion strategy should allow for the possibility to replace the harmonic 
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coupling with one in the spirit of finitely-extensible non-linear coupling, as 
to potentially match simultaneously more than just one inductive or dis-
persive coefficient in addition to α and C6.

A common strategy to handle quantum Drudes is the use of path-integral 
techniques [178–181]. The trouble with quantum Drudes is that the number 
of system replicas to be simulated is of order one Rydberg divided by 
thermal energy, which is a few hundred at room temperature. One can get 
away with slightly fewer replicas with diffusion Monte Carlo [182], which is 
closely related to path integrals, in conjunction with a diagrammatic expan-
sion of interacting Drudes [183]. Unfortunately, improvements do not seem 
such that numerical costs fall below an approach, in which induction is 
handled classically and ATM interactions are included explicitly. This turns 
the quantum Drude oscillator approach into something like a sleeping 
beauty, which could be awaken if a handsome prince managed to cut 
down the computational overhead w.r.t. classical polarizable potentials 
plus two-body like short-range potentials to a factor of order ten or less.

4.4. Shell models and many-body repulsion

The interaction of atoms results in the deformation of (closed) electronic 
shells beyond the induction of electric multipoles through electrostatic 
fields, reflected, for example, by an approximately rigid translation of the 
valence shell with respect to the remaining ion. A reduction of the Coulomb 

Figure 7. Experimental values for the left-hand sides of Eq. (51). Reprinted from J. Comput. Phys., 
326, Cipcigan, F. S., Sokhan V. P., Crain, J., and Martyna, G. J., Electronic coarse graining 
enhances the predictive power of molecular simulation allowing challenges in water physics 
to be addressed, 222–233, Copyright (2016), with permission from Elsevier.
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interaction between charges and dipoles due to the overlap of electronic shells 
can be described with damping functions, which were introduced in Sect. 
3.2.2. The electrostatic field, its gradients but also the Fermi principle and 
hence repulsion deforms the electronic density compared to the superposition 
of the free-ion or free-atom references. These deformations were first 
approximated as being spherical in the so-called breathing-shell model 
[184] and described on a common footing with dipolar polarizability [167]. 
Later, non-spherical shell deformations were also considered with deform-
able-shell [185], de-formable-ion [161], or distortable-ion [174] potentials. 
Variables describing the state of deformation are the ionic radius, or rather, 
the deviation δi from the radius of the free ion, plus variables describing the 
shape of the deformation. In atomistic simulations, the shell variables, includ-
ing the induced dipoles, are assumed to minimize the potential energy.

The starting point of much of the original literature [48,184,185] 
assumes a harmonic expansion of the potential energy in terms of small 
variables, i.e. displacements, dipoles, and breathing modes. However, for 
general situations, the potentials are better cast in terms of implicit many- 
body potentials, the ingredients of which are the repulsive interactions and 
on-site energy penalties for the deformation of the shell with respect to 
free ions. In such models, the short-range repulsion can be expressed, for 
example, in a breathing-shell potential, through an expression of the type 
[174,186,187] 

Usr à
X

i
Ubre;i coshÖδi=σiÜ á

X

i;j ! i
Urep;ije�ÖráδiáδjÜ=ÖbiábjÜ: (52) 

Here, Ubre;i, σi, Urep;ij, and bi are constant coefficients, while the δi minimize 
Usr. The first summand on the r.h.s. of Eq. (52) reflects the on-site coupling 
in a heuristic fashion, i.e. it can be parameterized to yield the correct shell 
stiffness at small δi while suppressing embarrassing ion shrinkage at large 
compression.

Accounting for anisotropic shell deformation requires tensors of rank 
one and higher to be included as arguments in the functions appearing on 
the r.h.s. of Eq. (52) such that they reduce to a scalar in a meaningful way, 
i.e. without violating the isotropy of space. Anisotropic shell distortions 
seem to be required to simultaneously improve phonon spectra and the 
binding energy differences of competing ionic structures compared to rigid- 
shell potentials merely reflecting dipolar polarizability [184,188]. We note in 
passing that aspherical atoms modeled with potentials assuming fixed bond-
ing topography has been pioneered by Price, Stone, and coworkers [189]. 
Deviations from spherical symmetry then stems predominantly from intra-
molecular interactions so that shape parameters can be treated as fixed 
relative to a molecular coordinate system.
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A central motivation for introducing flexible shell models was to repro-
duce the experimentally observed violation of the Cauchy relation in simple 
salts and their phonon dispersion at high symmetry points [48,184]. Here, it 
might be worth observing that the Cauchy pressures tend to be minor for 
alkali halides but quite substantial for alkaline earth oxides like MgO. One 
central difference between these two classes of simple salts is that a free, 
singly-charged halogen anion is stable while a free, doubly charged chalco-
gen anion is not. Thus, assuming doubly charged ionic references without 
accounting for charge transfer upon a change in bond length could be 
difficult to justify.

Interestingly, charge-transfer and breathing-shell models have a similar 
effect on the Cauchy pressure. When the application of a stress in x-direction 
induces ions to shrink in all spatial directions, the external pressure required 
to maintain the crystal shape in the y or z direction is reduced, which implies 
that C12 is reduced compared to a rigid-shell model with fixed or zero δi. In 
contrast, when shearing, for example, a rock-salt structure, the nearest- 
neighbor bond lengths only change in order OÖε2

44Ü so that the shear modulus 
is the same as that of a rigid-shell potential. In other words, C44 !C12, is also 
unavoidably obtained for charge-transfer potentials applied to rocksalt crys-
tals, irrespective of whether neutral atoms or ions are taken as reference [190]. 
Figure 8 pictures the just-made arguments for shell models schematically and 
explains qualitatively how anisotropic shell models can lead to a Cauchy 
pressure of either sign. Closed form expressions for the elastic constants in 
breathing-shell models are summarized in Ref. [191], which also contains 
a critical comparison of different breathing-shell potentials.

Ion shrinkage under compressive stress without charge transfer and the 
unavoidable sublinear scaling of repulsion with the coordination number Z0 
in breathing-shell models strikes us as implausible. It certainly violates the 
superlinear scaling of repulsion with Z0 obtained in a first-order DFT-based 
perturbation theory, in which the kinetic energy density of the electrons 
increases with ρ5=3, where ρ is the electronic density. Despite this argument 
being merely qualitative, it should reflect the proper trend as the trend is 
very clear. Our own quick and dirty analysis of the EOS of MgO in the NaCl 
and CsCl structures using exponential repulsion plus Coulomb interaction 
and the respective Madelung constants makes us believe that trends are 
complicated. Although the compressive part of the EOS can be described 
quite well with the most simple Born Mayer potential, the fitted charges turn 
out close to unity in both cases while Bader analysis finds more intuitive 
charges close to 1:7. When using the parameters deduced for the NaCl and 
CsCl-structure for the dimer, differences in the Coulomb energy turn out 
larger than for the repulsion. At the same time, the Bader charges barely 
change with the lattice constants in contradiction to our suspicion that 
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breathing-shell models reflect charge-transfer effects to low order. 
Nonetheless, short-range repulsion certainly induces non-spherical distor-
tions leading to electrostatic multipoles, which then must be included in the 
overall electrostatic interactions between atoms [161].

5. Many-body potentials for open-shell systems

By definition, open-shell atoms have an incomplete valence shell. Bonding 
between them occurs through the formation of either covalent, or, in 
condensed phases, also through metallic bonds. Interactions between open- 
shell atoms cannot be faithfully described with pair potentials without 
producing false trends, some of which are discussed in Sect. 2.3. The 
arguably most important many-body effect in open-shell systems is the 
weakening of a bond due to the presence of additional atoms. An extreme 
example is the onset of repulsion between hydrogen atoms, which attract 
each other as free radicals but repel each other in the presence of oxygen. 
A more subtle effect is the contraction of layers near unpassivated metal 
surfaces, where missing neighbors of the atoms in the surface layer 
strengthen their interaction with atoms in the layer underneath.

Figure 9 reveals this weakening for copper and carbon in different crystalline 
structures, including hypothetical structures. The energy per atom UpaÖa0Ü as 
a function of nearest-neighbor bond length (Figure 9a – copper, Figure 9e – 
carbon) was obtained from the materials scientist’s favorite electronic structure 
method, DFT [193,194] within the local density approximation [194] using 
projector-augmented waves [195]. The minimum of these curves is the cohesive 
energy of the crystal Ucoh à UpaÖaeq

0 Ü, where aeq
0 is the equilibrium bond length 

shown in Figure 9b for copper and in Figure 9f for carbon. aeq
0 is approximately 

a logarithmic function of the coordination number Z0 for both copper and 
carbon. The energy per bond in the equilibrium configuration, 
Ueq

pbÖZ0Ü à 2UcohÖZ0Ü=Z0, clearly decreases with Z0 and much more so for 

Figure 8. Deformation of an electron shell in response to a deformation of the macroscopic 
body. The electron shell is schematically depicted by the central circle. (a) During shear 
deformation, the displacement does not lead to a deformation of the shell. There is hence no 
influence of shell deformation on the shear modulus C44. (b) If the shell deforms isotropically, 
then an inwards motion of the black atoms will lead to an inwards force on the white atoms, 
implying C12 < C44. (c) For anisotropic shell deformation, an inwards motion of the black atoms 
will lead to an outwards force on the white atoms, leading to C12 ! C44. Adapted from Ref. [192].
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carbon (once Z0 � 3) than for copper. For both elements, the decrease of 
Ueq

pbÖZ0Ü is approximately algebraic in Z0, albeit with a steeper power law for 
carbon than for copper.

The results presented in Figure 9 imply that pair potentials cannot 
describe the energetics of these systems, although each individual UpaÖa0Ü
at fixed Z0 can be reproduced quite accurately using a regular Morse 
potential as evidenced by the solid lines in panels (a) and (e) of Figure 9. 
As Abell [62] emphasized, environment-dependent parameters are needed. 
Various families of many-body potentials for open-shell systems have been 
developed over the years to reflect these trends and, of course, more subtle-
ties. In this section, we will outline their functional forms and the properties 
of the solids that they describe. We will also motivate some of them from 
quantum-mechanical considerations.

A commonality of the most popular, simple open-shell potentials, namely 
EAM, second-moment tight-binding expansion (TB2M), Stillinger-Weber 
(SW), and Tersoff, which will all be introduced in this section, is that their 
total potential energy can be written as a cluster functional [19] 

Figure 9. (a,e) Energy per atom Upa in selected crystal structures as a function of the nearest- 
neighbor spacing a0. Solid lines are fits of the data to a standard Morse potential assuming 
nearest-neighbor interactions. (b,f) Equilibrium bond length aeq

0 as a function of coordination 
number Z0. (c,g) Equilibrium binding energy per bond Ueq

pb as a function of Z0. (d,h) Equilibrium 
bond length aeq

0 as a function of equilibrium binding energy per bond Ueq
pb (Pauling plot). Crystal 

structures range from 1D to 3D include hypothetical ones and are abbreviated as follows: 
dimer/molecule (mol), chain (ch), graphene (gra), triangular lattice (tri), kagome lattice (ka), 
square lattice (sq), diamond cubic (dc), simple cubic (sc), body-centered cubic (bcc) and face- 
centered cubic (fcc). The top row shows results for copper, while the bottom row shows results 
for carbon. U0 and r0 are the binding energy and bond length of the dimer. Data, which were 
produced using consistent DFT-LDA methodology, are merely meant to convey trends.
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UÖfrgÜ à 1
2
X

ij
U2ÖrijÜ á UmÖrij; ⇠ijÜ
�  

; (53) 

where U2ÖrijÜ is a pairwise additive interaction—to be distinguished from 
the pair potential—and UmÖrij; ⇠ijÜ is an effective pair interaction, which, 
however, depends on a bond-environment variable ⇠ij, which is not neces-
sarily symmetric in the indices and may contain a non-zero on-site term ⇠ii. 
Its specific interpretation changes from one potential class to the next but it 
always depends on a sum over third atoms through 

⇠ij à
X

k
ΞÖrij; rik; rjkÜ : (54) 

In a limiting case, ΞÖrij; rik; rjkÜ simply corresponds to the third term, 
U3Örij; rik; rjkÜ, of the expansion given in Eq. (2). However, UmÖrij; ⇠ijÜ can 
also implicitly include higher-order terms. The way how to express the 
various potentials in the generic form of Eq. (53) and (54) are detailed in 
Sect. 5.6. Those summaries may be useful to design prototype templates for 
functions or to work out elastic properties falling into this general category.

5.1. Density-dependent potentials

The alkali metals can be seen as a polar opposite to closed-shell systems, 
because their electrons are delocalized to the extent that their dispersion 
relation is close to that of free electrons up to the Fermi wave vector kF, 
albeit with an effective mass. This is because there is only one electron per 
atom in the conduction band so that only its minimum is sampled. For this 
reason, early attempts of describing bonding in (alkali) metals assume the 
Jellium model [75,196,197], which expresses the energy of an electron gas as 
a function of its density ρ à N=V, where in the case of (neutral) alkali 
metals the number of atoms N is identical to that of valence electrons. The 
Jellium model is the DFT-based approach to matter, in which the main 
effect of ions is assumed to provide a charge-neutralizing background to the 
electrons without explicitly accounting for the relative positions between 
ions. Interestingly, the Jellium model leads to densities and bulk moduli that 
are relatively close to those of crystals formed by light alkali metals, even 
when using the true electronic mass [196]. However, Jellium does not stiffen 
sufficiently much with increasing density when the Coulomb repulsion 
between the ionic cores starts to matter.

The potential of the form [198,199], 

UÖfrigÜ à NuÖρÜ á 1
2
X

i;j
U2ÖrijÜ; (55) 
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can certainly be motivated from the Jellium model. In this potential, which could 
be coined a global-glue potential, the Jellium model is augmented with a pair- 
wise additive repulsion, e.g. in the form of damped Coulomb interactions. In 
principle, not only the pair repulsion but also uÖρÜ can be made a function of the 
element, or, elements under consideration. While Eq. (55) can be generalized to 
non-homogeneous phases and alloys, e.g. via the construction of Wigner-Seitz 
cells and the request of local charge neutrality, surfaces would cause problems, 
since surface atoms “own” excessive volume, which makes a local density 
difficult to define. Thus, it is clear that potentials footing on Eq. (55), or, simple 
generalizations thereof, are not practicable. It is yet utmost instructive, to study 
their properties and further reasons for their failure.

Assuming interactions past the nearest-neighbor shell to be screened, see 
Sect. 9, severe restrictions for the elastic constants of simple solids ensue. 
The glue effectively acts as a positive, external pressure, pg, squeezing the 
ions together. Combining Eqs. (35) and (39) then allows the elastic tensor 
elements of elementary fcc and bcc crystals at zero external stress to be 
approximated (assuming a smoothly changing pg with density) with 

C11 à 2
ÅÅÅ
2
p

C0 � pg C12 à
ÅÅÅ
2
p

C0 á pg C44 à
ÅÅÅ
2
p

C0 � pg fcc
C11 à 2=

ÅÅÅ
3
p

C0 � pg C12 à 2=
ÅÅÅ
3
p

C0 á pg C44 à 2=
ÅÅÅ
3
p

C0 � pg bcc;
(56) 

where C0 would be an element-specific constant. Equation (56) predicts 
C44 <C12. Check mark for simple metals! For fcc, the sum rule csr :à
ÖC11 á C12Ü=ÖC12 á C44Ü à 3=2 can be read off. It is obeyed reasonably 
well by our favorite metal, csrÖCuÜ ⇡ 1:46 and other fcc metals, 
csrÖPbÜ ⇡ 1:56, csrÖNiÜ ⇡ 1:46, csrÖPdÜ ⇡ 1:66, csrÖAgÜ ⇡ 1:54, but less so 
by the favorite metals of our wives csrÖAuÜ ⇡ 1:73 and csrÖPtÜ ⇡ 1:85.

Unfortunately, bcc turns out mechanically unstable, because the pertinent 
elastic tensor is not positive definite owing to C12 !C11 for positive glue 
pressures. This inequality can be easily understood. The global glue attempts 
to increase density. This is done most effectively when nuclei keep a maximum 
mutual distance, which the most closed-packed structures achieve the best. But 
why then do alkali metals condense into bcc? Before addressing that question, 
we note that C11=C12 tends to be quite close to unity for simple bcc alkaline 
metals but not for bcc metals with an approximately half-filled d-shell. 
Specifically, C11=C12 à 1:2 within 2% for the alkali metals from lithium to 
cesium, while transition metals assume much larger ratios. For example, 1.95 
(V), 4.37 (Cr), 2.60 (W), and 1.76 (Fe). Thus, density-dependent potentials fail 
distinctly more for transition metals than for alkali metals. Also, most alkali 
metals transform into fcc at relative moderate pressures less than 10 GPa, thus, 
check mark again, before they actually undergo a series of additional phase 
transformations at even higher pressures [200]. Thus, despite being highly 
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flawed, Eq. (55) contains a few elements of truth for alkali metals. However, the 
existence of non-closed-packed equilibrium structures at large compression is 
also a clear indication that the assumption of pairwise repulsion may not be 
particularly accurate.

In a seminal work, in which the term electron correlation appears to have 
been introduced, Wigner [196] demonstrated that free electrons at small density 
can lower their energy compared to the cheapest, simple constant-density 
solution of fermions, which is spanned by the product of two Slater determi-
nants, one for spin up and one for spin down, in which all k-states are filled up 
to kF. At electron densities characteristic for alkali metals and using second- 
order perturbation theory, he found them to condense into a bcc crystal. One 
possible conclusion is that a reliable potential for alkali metals should implicitly 
reflect higher-order gradients in the electronic charge density. Stabilizing the 
right phase for the wrong reason, e.g. with potentials merely depending on 
(estimates for) the local electronic charge density and/or by tweaking cut-off 
distances or functional dependencies, as done, for example by some funky 
potentials in Sect. 3.4, cannot lead to accurate, transferable potentials.

5.2. Embedded-atom method and second-moment tight-binding potentials

A simple generalization of Eq. (55) is 

UÖfrigÜ à
1
2
X

i;j
U2ÖrijÜ á

X

i
FÖρiÜ ; (57) 

where ρi would be an estimate for the electronic charge density near atom i. 
Equation (57) forms the basis of a class of potentials, which has two names, 
embedded-atom method and tight-binding (TB) approximated to second- 
moment (2M) expansion. It has been historically pursued by two commu-
nities. The TB2M and EAM camps differ predominantly in how they 
motivate and later generalize FÖρiÜ for alloys or encode directional bonding, 
which will be sketched further below. Yet, neither camp keeps the inter-
pretation of ρi as the charge density of all valence or conduction-band 
electrons at or averaged over the vicinity of ri and assumes instead 

ρi à
X

jfii
f ÖrijÜ; (58) 

which excludes the contribution of the valence shell of the atom i itself. The 
function fjÖrijÜ is the square of a bond-integral in the TB interpretation and the 
charge density from atom j seen by atom i for the EAM camp. However, as 
Finnis and Sinclair [47] rightfully note in their pioneering study: “the conse-
quences of the form of the model [. . .] does not depend on the physical 
interpretation.”
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Ducastelle [46] appears to have been first to suggested Eq. (57) building on 
earlier work by Cyrot-Lackmann [201] and Friedel [202] on TB2M approaches 
to metals. He also proposed what could be seen as the most generic functional 
form of an EAM or TB2M potential, simple exponential repulsion and 
furthermore 

FÖρiÜ à �A ÅÅÅÅρi
p (59a) 

ρi à
X

jfii
e�rij=σa : (59b) 

For alloys, A and σa depend on the atom type. Moreover, atom (EAM) or bond 
(TB2M) specific prefactors must be added to each summand on the r.h.s. of Eq. 
(59b). The central arguments leading to the square-root dependence of FÖρÜ are 
sketched in Sect. 5.8. The main reason for the exponential dependence is, as always, 
the exponential (Slater) type of the atomic orbitals, even though the full TB bond 
integrals have polynomial prefactors, see, e.g. Ref. [203]. This functional form was 
optimized for a wide variety of metals and alloys by Cleri and Rosato [204].

Recast into our generalized Morse form, Eq. (8), the potential energy 
expression becomes 

UÖfrigÜ à
1
2

U0

m� n
X

i

X

jfii
menÖ1�rij=r0Ü �

X

jfii
n2e2mÖ1�rij=r0Ü

" #1=2
8
<

:

9
=

; :

(60) 

We would like to argue that the usefulness of this expression for rationaliz-
ing trends in metallic bonding (see Sect. 6) is on par with that of the 
Lennard-Jones potential for noble gas atoms, which is why we feel that 
calling systems described by this potential Ducastellium is as appropriate as 
using the well-established term Lennard-Jonesium.

Historically, the EAM/TB2M potential described by Eq. (57) was inde-
pendently discovered several times after Ducastelle’s work. For example, 
Gupta [64] showed that it reproduces the lattice relaxation of metals near 
surfaces. Tománek, Mukherjee, and Bennemann revealed its appropriate-
ness to describe the energetics of small metal clusters [205] as well as surface 
and vacancy energies of transition metals [206]. In thermodynamics, 
a formulation identical to EAM/TB2M has been employed by 
Pagonabarraga and Frenkel for coarse-grained particle dynamics calcula-
tions, where FÖρiÜ becomes a free-energy that is adjusted to the equation of 
state of a liquid [207,208].

Equation (57) can also be motivated from the quasi atom theory of Stott 
and Zaremba [209] and from the effective-medium approximation theory of 
Nørskov and Lang [210,211]. In their approaches, the energy gained when 
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embedding an atom i into a given site ri, e.g. an interstitial or vacancy site, is 
argued to be a functional of the electronic density at the embedding site and 
thereby to depend in leading order on the charge density ρi that exists at ri 
before the atom is embedded. Daw and Baskes [9,45] built on these ideas and 
approximated the charge density ρi at the embedding site ri as 
a superposition of the charge density from neighboring atoms. They coined 
the term embedded-atom method and provided important insight as to what 
extent many-body terms, as well as hydrogen, affect materials behavior 
including ductility. Ercolessi, Parrinello and Tosatti renamed EAM into 
glue potential [212–214] while claiming that their specific realization of an 
EAM potential “accounts for all known lattice properties of Au” [212].

Modern EAM potentials use more complex functional forms than the 
simple exponentials of Ducastelle. Those are out of scope for the discussion 
in this review and the interested reader is referred to the original literature, 
see for example works by Mishin and coworkers [215–219]. In the spirit of 
early works by Foiles, Daw, and Baskes [220], parameterizations of such 
EAM potentials are distributed using tabulated data for FÖρÜ, f ÖrÜ and the 
pair-potential U2ÖrÜ.1 Care has to be taken when interpolating between these 
data points in the final implementation of a potential, as the choice of spline 
order is not to be cast aside as a technicality, because it affects the properties 
of the potential [221].

In our own experience on copper [222], the simple form first used by 
Ducastelle [46] and Gupta [64] performs best when testing structures with 
coordination numbers varying systematically from Z à 2 to Z à 12. The 
reason for this trend might be, as so often, that simple, physically well 
motivated functional forms are less prone to overfitting than elaborate 
functions having been tweaked to enforce right numbers for selected prop-
erties in one or few structures. To this we wish to add that we highly doubt 
the pair-additive repulsion in open-shell systems to be an accurate approx-
imation. Thus, there is little reason to fiddle around with the 4ȸth digit of an 
embedding function, if “bond-order effects” on repulsive forces lead to 
errors in the second digit.

5.3. Modified-embedded-atom-method potentials

A deficiency of EAM potentials is their generic preference for closed-packed 
structures. While funky parametrizations allow bcc to be stabilized, we refer 
yet again to Wigner’s work on alkali metals in Sect. 5.1 and repeat our claim 
that stabilizing the right phase for the wrong reason cannot yield a robust 
potential. To better encode directional bonding in EAM, Baskes [223,224], 
having silicon in mind, suggested to augment the computation of the electro-
nic density with an angular three-body term. Baskes already hinted [224] that 
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his explicit expression can be interpreted as a dependence of the embedding 
function on the gradient and higher-order spatial derivatives of the density, 
i.e. to replace FÖρÜ with FÖρ; @αρ; @α@βρ; . . .Ü, where @α is short-hand notation 
for @=@rα. Shortly after, Baskes [225,226] suggested to replace (the estimate 
for) the embedding density according to ρi ! �ρi with 

�ρi
2 à

X

l
tÖlÜi ρÖlÜi

⇣ ⌘2
; (61) 

the first four ρÖlÜi satisfying 

ρÖ0Üi à
X

j
f Ö0Üj ÖrijÜ (62a) 

ρÖ1Üiα à
X

j
nα

ij f Ö1Üj ÖrijÜ (62b) 

ρÖ2Üi

n o2
à

X

j
nα

ijn
β
ij f Ö2Üj ÖrijÜ

( )2

� 1
3
X

j
f Ö2Üj ÖrijÜ

( )2

(62c) 

ρÖ3Üiαβγ à
X

j
nα

ijn
β
ijn

γ
ij f Ö3Üj ÖrijÜ (62d) 

where tÖlÜi are weighting coefficients, nij is a unit vector parallel to bond i-j, 
and Einstein summation convention is implied on the Cartesian indices for 
the squared quantities. Here, the f ÖlÜj ÖrijÜ reflect generalized, partial back-
ground electron density from atom j seen by atom i. Through this general-
ization, semi-explicit angular dependencies result, as for example, through 
the squaring of the ρÖ1Üi term. It leads to a summand of the form 
nα

ijnα
ik f Ö1Üj ÖrijÜf Ö1Ük ÖrikÜ, which is proportional to cos#ijk. With each higher- 

order term, higher-order sinusoidal dependencies on bonding angles result. 
An appealing aspect of these modifications is that modified EAM (MEAM) 
potentials pick up information on the local order beyond the coordination 
number and germanium contain the square of the left-hand side of Eq. 
(62d). Disappears for any mirror-inversion crystal but not for the diamond 
lattice. Thus, MEAM-potentials for silicon and germanium contain an 
expression energetically favoring large absolute values of ρ3

i .
We now argue how a MEAM potential can stabilize open crystal lattices. 

To this end we consider the expression 

gi à
X

j;kfii;j
cos#0 � nα

ijnα
ik

n o2
fjÖrijÜfkÖrikÜ (63) 
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à ρ2
i cos2 #0 � 2ρiαρiα cos#0 á ρiαβρiαβ � Ö1� cos#0Ü2

X

j
f 2
j ÖrijÜ; (64) 

where the upper index on the partial embedding charge densities was 
omitted. gi clearly has a minimum at the preferred bond angle #0, since 
nα

ijnα
ik is the cosine of the angle j-i-k. Now let us proceed with an ideal crystal 

structure, in which only partial densities from nearest neighbors substan-
tially contribute to the shell. In the given approximation, we can replace 
f ÖrijÜ with ρ=Z0 so that after executing the restricted double sum correctly 

gi ⇡ ρ2 cos2 #0 � 2 cos#0να
0να

0 á ναβ
0 ναβ

0

⇣ ⌘
� ρ2

Z0
Ö1� cos#0Ü2 : (65) 

Assigning an energy penalty on gi allows the degeneracy of different crystal-
line structures with identical coordination number but different bond angles 
to be lifted within a nearest-shell approximation. At the same time, open 
structures with small Z0 and correct bond angles can be favored over closed- 
packed structures. It is clear that Eq. (65) can be constructed (with the 
exception of the additive constant) from a linear combination of the MEAM 
invariants like those given in Eq. (62).

Although MEAM potentials, similar in spirit to the ones just described, 
are routinely used in molecular simulations, it is easily argued that these 
MEAMs have issues. First, there is no physically motivated reason for the 
existence of the upper indices in the f ÖlÜj coefficients when justifying the 
modification from Baskes’ argument that the embedding function should 
also depend on derivatives of the embedding density. Second, within this 
picture, the embedding function can generally depend on scalars that can be 
constructed from derivatives, which, however, must be constructed such 
that they are invariant w.r.t. a rotation of the coordinate system. There are 
many more scalars of a similar order as those contained in Eq. (62) [222]. 
For example, if ρα1...αl

ÖrÜ :à @α1 . . . @αl ρÖrÜ, then in addition to ρ2
αβ there can 

be a contribution of ρααρββ, which, in principle, can be linearly independent 
of the former, rather than to be constrained to ρ2

αβ � ρααρββ=3, which can be 
loosely associated with the term of Eq. (62c). Yet another invariant, which 
can be constructed with four Cartesian indices and a square in the densities, 
would be ραραββ. Thus, to flesh out our second point of criticism, the l à 2 
and l à 3 terms in Eq. (62c) are far from complete and it is not clear if the 
most relevant ones have been considered.

The “expansion” of Eq. (62c) truncates at the third-order term, 
which is the lowest-order invariant that can discriminate between 
nearest-neighbor-shell energies of fcc and hcp. However, different 
cubic structures cannot be distinguished with shell tensors of rank 
three or less. Fourth, the coefficients tÖlÜi can depend, in principle, on 
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ρÖ0Üi . It might be possible to obtain some dependencies through asymp-
totic, dimensional, or other systematic analyses. Guessing them cor-
rectly appears an almost impossible task. Thus, we feel that the already 
impressive performance of MEAMs should be further improvable. 
However, one potentially important ingredient missing is the environ-
ment dependence of the functions fjÖrijÜ beyond screening, e.g. an 
environment-dependence of σa. Lifting this restriction would allow 
mediated interaction to take place as they occur, for example, in 
breathing shell models or in TB potentials going beyond the second- 
moment approximation, albeit at a potentially much increased com-
putational cost.

5.4. Stillinger-Weber potential and extensions

The binding energy in non-funky pair-, EAM, and TB2M potentials is 
largest when atoms are most closely packed. However, the three light-
est group-14 elements (C, Si, and Ge) are (meta-) stable in the 
diamond lattice, which has a packing fraction less than 50% of that 
in fcc or hcp. To stabilize the open diamond lattice, Stillinger and 
Weber [227] proposed to add a rather simple angle-dependent term to 
a Mie pair potential, which, however, was multiplied with the rather 
clever cut-off function 

fcÖrij; γ; rcÜ à exp γ=Örij � rcÜ
⇥ ⇤

ΘÖrc � rijÜ : (66) 

It has the nice property that all derivatives continuously approach zero at 
the cut-off distance rc. The angular add-on consisted of a penalty quadratic 
in the deviation from tetrahedral bonding on a given atom i, as originally 
proposed by Keating [228]. The extra-term is cut off when the length of one 
of the two bonds, rij and rik, forming a bond angle of #ijk on atom i, 
approaches rc. Put together in the notation used throughout this article, 
the SW potential reads 

UÖfrgÜ à
P

i;j ! i

U0
n�m

⇢
m r0

rij

⇣ ⌘n
� n r0

rij

⇣ ⌘m
�

fcÖrij; γ1; rcÜ

á
P

i;jfii;kfii;j
Ut cos#ijk � cos#0
�  2 fcÖrij; γ2; rcÜ f cÖrik; γ2; rcÜ

(67) 

with cos#0 à �1=3 for the tetrahedral angle. Besides this angle, the SW 
potential has eight independently adjustable parameters: U0, r0, m, n, γ1, rc 
for the pair potential, and in addition Ut, γ2 for the tetrahedral bonding part. 
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Although the SW potential is occasionally used to also model carbon, it 
should be kept in mind that the original SW potential does not recognize 
graphite as being energetically favorable at ambient pressure.

Despite its simplicity and empirical nature, the SW potential can be para-
metrized for silicon to reproduce (by construction) its elastic properties in the 
diamond structure, but also fairly well some high-pressure phases, and the 
melting temperature at ambient pressure, including the anomalous jump from 
small to large density during melting [227,229,230]. The latter goes hand in hand 
with a coordination change from Z0 à 4 in the diamond structure to Z ,! 6 in 
the liquid [231].

An appealing aspect of the SW potential is that the competition between 
tetrahedral and dense packing favored by the angular and the pair part, 
respectively, can be tuned through the ratio Ut=U0 [232]. By increasing it 
from a value characteristic for germanium through that of silicon, it is 
possible to make the disordered phase adopt a local tetrahedral order at 
large Ut=U0, which explains why SW is occasionally used for the united- 
atom modeling of water [233]. Using small Ut=U0, SW can describe con-
densed phases of tin, including that condensing in the β-tin structure [234], 
which can be seen as a compromise between tetrahedral and close packing.

Of course, as Stillinger and Weber [227] admitted, their model has quantita-
tive deficiencies. They were revealed most clearly by Biswas and Hamann [235], 
who demonstrated that the equation of state of any crystalline structure other 
than the diamond structure is highly flawed. However, even for the diamond 
structure, the deficiency of the SW can become qualitative. For example, SW 
fails to reproduce that silicon is brittle under tension, although SW can be used 
to mimic brittle (non-silicon) tetrahedral solids, see Refs. [236,237]. This weak-
ness is shared by other empirical potentials and related to the finite range of the 
cutoff, which will be discussed in more detail in Sect. 9.

The SW potential formally looks like a cluster potential. Given that the three- 
body term has a zero-energy contribution in the ideal diamond structure, it must 
be concluded that the pair interaction is an effective Z0 à 4 pair potential rather 
than the “true” pair potential. Improvements of the SW address this issue 
partially by augmenting SW with an environment dependence in terms of 
a coordination-dependent equilibrium bond angle #0. Such environment- 
dependent interaction potentials (EDIPs) were first developed for silicon 
[238,239] and later for other elements including carbon [240,241]. Due to its 
ability to reflect the quasi-degeneracy of graphite and diamond, an EDIP for 
carbon was the first empirical interatomic potential that correctly predicted the 
relation of 3-fold (graphite-like, sp2-hybridized) and 4-fold (diamond-like, sp3- 
hydridized) atoms in amorphous carbon obtained from liquid quenches at 
varying densities [241].
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Another interesting generalization of the SW potential, which Biswas and 
Haman [235] proposed to model bond-angle energetics on atom i beyond 
the Keating model, reads 

U3Örij; rik; rjkÜ à
X

l
ClFlÖrij; rikÜPlÖcos#lÜ; (68) 

where Cl are expansion coefficients, PlÖcos#Ü Legendre polynomials, and the 
FlÖrij; rikÜ functions, which can be defined to reproduce the exact or any general 
three-body potential. When assuming them to factorize as 
FlÖrij; rikÜ à ָlÖrijÜָlÖrikÜ, e.g. with simple exponential dependencies, Biswas 
and Hamann demonstrated the computation of U3 to be reducible to order Zloc, 
where Zloc is the number of atoms within the interaction range of atom i, while 
irreducible potentials, such as the ATM potential, require a number of opera-
tions proportional to Z2

loc.

5.5. Tersoff potentials

Dissatisfied by the poor transferability of the SW potential [235] and 
inspired by Abell’s analysis of the sensitivity of bond strengths on the 
local environment [62], Tersoff presented a series of papers [242–246], in 
which he introduced the concept of bond order to the world of empirical 
potentials. According to Pauling [247], the bond order is the difference of 
the number of electrons in bonding and anti-bonding orbitals. It is 
a monotonically decreasing function of the coordination number. 
Tersoff’s work was an attempt to construct functions that measure (effec-
tive) coordination numbers and thereby the bond order. To do so, he 
introduced a cut-off function, which is unity up to a distance rc1 meant to 
include nearest neighbors and which then quickly falls off to zero at 
a distance rr2 supposedly less than typical next-nearest neighbor distances: 

fcÖrÜ à ΘÖrc1 � rÜ áΘÖr � rc1ÜΘÖrc2 � rÜ
2

1á cos π r � rc1

rc2 � rc1

✓ ◆⇢ �
: (69) 

With the help of this cut-off function, the bonds to atom i other than the ij 
bond can be characterized with 

⇠ij à
X

kfii;j
gÖcos#ijkÜfcÖrikÜ ; (70) 

where the angular dependence, originally chosen as 

gÖcos#Ü à 1á c2

d2 �
c2

d2 á Öcos#0 � cos#Ü2
(71) 
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will later help to make a crystal in the diamond structure resist shear 
stresses. Here c and d are adjustable parameters, while #0 is, for 
example, the ideal tetrahedral angle. The term ⇠ij can be interpreted 
as an effective coordination number (minus one, since atom j is 
excluded from the sum) under which atom i “sees” atom j. If all bond 
angles on atom i are equal to #0, ⇠ij à Zi � 1 assuming the cut-off 
function to assume the values one and zero for nearest and next- 
nearest neighbors, respectively. However, “unhappy” angles formed by 
ij and ik bonds lead to an increase of ζ ij.

Tersoff then constructed a prefactor, bij, to the attractive pair interaction 
as a function of the (effective) coordination number and called it a bond- 
order variable. It is defined heuristically as 

bijÖ⇠ijÜ à 1á Öβi⇠ijÜγi
�  �1=Ö2γiÜ; (72) 

where βi, and γi are element-specific parameters. For large ⇠ij, bij scales with 
1=

ÅÅÅÅÅ
⇠ij

p
, which was shown by Brenner [248] to be similar to EAM or TB2M 

potentials. With these ingredients, a general Tersoff potential reads 

UÖfrgÜ à 1
2
X

i;jfii
urÖrijÜ � bijuaÖrijÜ
�  

fcÖrijÜ; (73) 

where the (pair) contributions urÖrijÜ and uaÖrijÜ are strictly repulsive and 
strictly attractive, respectively. Typically, ua;rÖrijÜ are exponential functions 
to reflect the universal equation of state of crystals [62,249].

Using a symmetrized bond-order parameter, �bij à Öbij á bjiÜ=2, the 
Tersoff potential can be cast as 

UÖfrigÜ à
X

i;j ! i

U0

n�m menÖ1�rij=r0Ü � �bij n emÖ1�rij=r0Ü
n o

fc ÖrijÜ: (74) 

Tersoff chose n à 2m, as to reproduce the original Morse potential [245]. 
From the Ducastelle-potential perspective, i.e. when setting gÖcos#Ü to 
unity, this is precisely the choice of exponents, in which the binding energy 
is insensitive to the coordination number within the nearest-neighbor 
approximation, see our discussion on this in Sect. 6.1. Tweaking the expo-
nents toward larger (smaller) n=m ratios biases structures in favor of larger 
(smaller) coordination numbers.

A point that might be particularly important and easy to make in 
the context of bond-order potentials is that the effect of screening is 
cast through a cutoff rather than through the analysis of local topol-
ogy. For example, given fixed values for the two cut-off radii rc1;2 in 
the Tersoff potential, it simply seems wrong that the variable ⇠ij can 
change from its generic value of 3 in the diamond structure to 15 
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upon a relatively minor isotropic compression or to 0 upon 
a hypothetical homogeneous decompression. A more elaborate discus-
sion of this issue is given in Sect. 9.

5.6. Generic functional form

All open-shell potentials discussed in the preceding sections, and the closed- 
shell ATM potential, can be cast into the universal functional form given by 
Eq. (53) and (54). The universal form highlights similarities between the 
construction of these empirical potentials and simplifies the analytic manip-
ulation, such as the computation of properties that depend on derivatives 
like forces, 

f i à �
1
2
X

ij

@U2

rij
á @Um

rij

✓ ◆
n̂ij �

1
2
X

ij

@Um
@⇠ij

X

kfii;j

X

X

@Um
@rX

n̂X (75) 

with Ξij;Ö@Ξ=@rijÜrij=rij, where rij, rik and rjkare the first, second and third 
argument of ΞÖÜ. Stresses or higher order derivatives like elastic constants 
are equally straightforward to evaluate.

We summarize the functional forms for the potentials discussed here in 
Tab. 2. Both ATM and SW potentials have a many-body contribution of the 
form UmÖrij; ⇠ijÜ à ⇠ij, which reduces the many-body contribution to a true 
three-body contribution, e.g. U3 in Eq. (2). Carlsson [19] dubbed these types 
of expressions cluster potentials. Ducastelle and Tersoff introduce 
a nonlinear mapping for the functional dependency on ⇠ij in Um, turning 
the cluster potential into what Carlsson termed a cluster functional. The 
critical difference is that while cluster potentials go to a finite order in the 
slowly converging series Eq. (2), cluster functionals implicitly include 
higher-order terms. This can be seen by expressing the many-body con-
tribution as a Taylor series in ⇠ij. This Taylor series is truncated for cluster 
potentials but contains quadratic ⇠2

ij, cubic ⇠3
ij and higher-order terms for 

cluster functionals. The quadratic term, 

⇠2
ij à

X

k;l
ΞÖrij; rik; rjkÜΞÖrij; ril; rjlÜ; (76) 

clearly contains a four-body contribution to U4 in Eq. (2). Similarly, the 
cubic terms contributes a five-body interaction and so on. This implicit 
incorporation of higher-order terms can alleviate the slow convergence of 
the formal series expansion given by Eq. (2), while avoiding computationally 
expensive, explicit calculations of higher-order terms. 
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expÖ�rij=σrÜfcÖrijÜ Ducastelle=Gupta;Tersoff

⇢

UmÖrij; ⇠ijÜ /
⇠ij ATM; SW
δij

ÅÅÅÅÅ
⇠ij

p
Ducastelle=Gupta

Ö1á ⇠ijÜ�1=Ö2γÜ expÖ�rij=σaÜfcÖrijÜ Tersoff

8
<

:

ΞÖrij; rik; rjkÜ /
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c ÖrijÜf SW
c ÖrikÜ SW

gTÖcos#ijkÜfcÖrikÜ Tersoff

8
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>>:

Table 3. Selected many-body potentials as cast into the generic functional 
form, Eq. (53) and (54). We here present simplified expressions for unary 
systems and have omitted prefactors to highlight functional dependencies, but 
generalization to alloys and introduction of prefactors is straightforward. σr 
and σa are characteristic length-scales of repulsion and attraction, respec-
tively. fc are cutoff functions whose expressions differ between Stillinger- 
Weber and Tersoff, see Eq. (132). The functions gSW and gT encode the 
angular dependence of Stillinger-Weber and Tersoff, respectively. Divergent 
onsite terms ⇠ii are implicitly excluded from summation. Generic forms of the 
SW and Tersoff potentials differ from their original formulation by 
a (constant) onsite contribution that is inconsequential for forces. 

5.7. Brenner potentials

Brenner reparameterized Tersoff’s functional form, specifically with γi à 1, for 
modeling hydrocarbon chemistry [10,250]. This potential is now known as the 
reactive empirical bond-order potential (REBO). Brenner realized that Tersoff’s 
potential essentially ignores the π bond in sp-valent system. Thus, in its raw form, 
it is unable to describe the complex chemistry of hydrocarbons, for example radicals 
or bond conjugation. To correct for these deficiencies, Brenner introduced lookup 
tables that correct Tersoff’s total energy expression depending on the coordination 
of the atoms involved in the bond. The many-body term becomes 

UmÖrij; ⇠ijÜ à � bijÖ⇠ijÜ á ⇧ijÖNi;Nj;Nconj
ij Ü

h i
uaÖrijÜfcÖrijÜ; (77) 
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where Ni is the coordination of atom i obtained with a smooth cutoff function 
fcÖrÜ, Ni à

P
j f ÖrijÜ. The function ⇧ij accounts for the missing π-bond and is 

a bicubic interpolation between values tabulated for specific coordination of the 
atoms. Nconj

ij is another integer variable that is � 2 if the bond is conjugated, 
which is the case if a neighboring atom (of the bond i-j) has a coordination less 
than four. Nconj

ij increases the neighbor shell, which influences the energy of 
bond i-j, making the potential longer ranged than Tersoff’s.

In addition to the correction for the π-bond, Brenner also corrects the σ- 
bond contribution, using the bond-order expression 

bijÖζ ijÜ à 1á ⇠ij á PijÖNÖHÜi ;NÖCÜi Ü
h i�1=2

; (78) 

where Pij is again a lookup table and NÖHÜi and NÖCÜi are coordination 
numbers of atom i, but only counting hydrogens or carbons, respectively, 
such that Ni à NÖHÜi á NÖCÜi . Pij is only nonzero for C-C bonds if a hydrogen 
is present as a bonding partner, NÖHÜi ! 0. The lookup tables were fitted to 
atomization energies of many different hydrocarbon molecules. More infor-
mation can be found in Refs. [10,250], including nodal values for the lookup 
table ⇧ij and Pij.

A second generation reactive empirical bond-order potential (REBO2) 
was published twelve years later by Brenner et al. [11]. This potential 
improves upon the original formulation by adopting new functional 
forms for urÖrÜ and uaÖrÜ. Specifically, the repulsion in REBO2 contains 
a screened Coulomb (Yukawa) contribution, as discussed in Sect. 3.2.3, 
in addition to the purely exponential repulsion of REBO and Tersoff’s 
formulation. REBO2 has two distinct angular functions gÖ#ijkÜ, depend-
ing on the coordination of atom i. The potential also added a (four- 
atom) dihedral potential, allowing proper modeling of rotations around 
carbon-carbon double bonds. The REBO2 potential was augmented with 
non-bonded (dispersion) interactions by Stuart, Tutein and Harrison 
[251] (a development that, despite being published earlier, occurred 
after the development of REBO2).

We here put forward the bold claim that REBO is the first successful 
machine-learned potential. Essentially, Brenner did away with the fixed 
functional form through his lookup tables to correct Tersoff’s potential 
for a specific application. While the sophisticated interpolation techni-
ques that are nowadays used for machine-learned potentials (neural 
networks, Gaussian processes [252]) were still under development at 
the time of Brenner’s publications, the spline-interpolated lookup tables 
essentially fulfill a similar role of extrapolating in a high-dimensional 
space.

ADVANCES IN PHYSICS: X 55



5.8. Beyond second moments

Before talking about potentials beyond second moments, we need to take a 
step back and elucidate the origins of the second-moment expansion. In 
particular, we want to emphasize that there is an atom-centered and a bond- 
centered expansion that lead to different functional forms for binding 
energies. We start our discussion with the atom-centered expansion.

The TB2M expressions can be rationalized from orthogonal tight-binding 
models as follows: The total (band) energy of the electronic system is 
given by 

Eband à tr ρ̂Ĥ à
X

n
f ÖεnÜεn à ρiαjβHiαjβ (79) 

where the f ÖεÜ is the Fermi-Dirac distribution, εn are the energy eigenvalues 
and ρ̂ à f ÖĤÜ is the density matrix.2 At low electronic temperature, f ÖεÜ is 
simply a step function such that the sum in Eq. (79) runs over all states with 
energy below the Fermi level εF. The total energy of the system typically 
includes a pair-wise repulsive contribution in addition to Eband, which 
absorbs (and approximates) all the things that were implicity or explicitly 
neglected in the derivation of the orthogonal tight-binding band model, 
such as three-center terms, overlap repulsion, and others.

A crucial step in turning the tight-binding total energy picture into the 
atom or bond-centric pictures underlying interatomic potential was the 
formulation of the local density of states (DOS) based on moments of the 
Hamiltonian. In metals, bonding is determined by the shape of the electro-
nic density of states around the Fermi level. The local density of states is 
given by [34] 

niαÖεÜ à hiαjδÖε� ĤÜjiαi; (80) 

where jiαi is orbital α on atom i. In terms of this local density of states, the 
band energy becomes 

Eband à
X

iα

Z
dεεf ÖεÜniαÖεÜ : (81) 

The moments of the local density of states are given by [253,254], 

μÖpÜiα à
Z

dεεpniαÖεÜ à hiαjĤpjiαi à HiαjβHjβkγ � � �Hlδiα; (82) 

without a sum over iα (although that index is repeated). The right hand side 
of Eq. (82) has an intuitive interpretation. For the second moments, 

μÖ2Üiα à HiαjβHjβiα; Öno summation over iα!Ü (83) 
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we hop from atom i to all neighboring atoms j and back to atom i and the 
sum of the squared Hamiltonian elements given the moment. For the third 
moment, 

μÖ3Üiα à HiαjβHjβkγHkγiα; (84) 

we take all self-returning hopping paths involving three atoms, and so on. 
Since the Hamiltonian matrix is short ranged (remember, it decays roughly 
like an exponential!), the second moment only depends on the close vicinity 
of atom i. Higher moments “feel” the atomic structure out to further 
distances. The moments are useful because they characterize the shape of 
the density of states. If we know all moments, we know the density of states; 
conversely we can approximate the density of states using just the lowest 
moments.

Systematically approximating the density of states from the lowest 
moments is highly nontrivial, and a number of approaches have been 
suggested. These approaches include the recursion method [255,256] 
(that lead to the systematic development of bond-order potentials 
[257,258]), the maximum entropy method [259–262], or simply approx-
imating the local DOS with a rectangle [202,263]. Let us now assume 
we have an unary (for simplicity s-valent) system (e.g. Cu) with bond 
integral βssσÖrÜ for the ssσ-bond. There is no angular dependence and 
the second moment of the local DOS at atom i – see Eq. (83) – is 
given by 

μÖ2Üis à
X

j
β2

ssσÖrijÜ : (85) 

Assuming a half-filled rectangular DOS and a single electron per atom in 
our s-valent metal, the contribution of atom i to the band energy (the first 
moment of the local DOS integrated up to the Fermi level) becomes 

Eband;i à �
ÅÅÅÅÅÅÅÅÅÅ
6μÖ2Üis

q
; (86) 

which is the origin of the square-root in Eq. (59a). A maximum entropy 
estimate would lead to a Gaussian, which changes the numerical prefactor of 
Eq. (86) but not the functional form [264].

Semiempirical atom-centered higher-moment methods have also been 
developed. Carlsson considered fourth moments (that define something 
like the kurtosis of the DOS) for models of semiconductors [265] and 
transition metals [266]. While higher-moment atom-centered techni-
ques have seen some development since [267,268], they have to the 
best of our knowledge not been widely employed in molecular 
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calculations. The breakthrough of higher-moment methods came with 
the development of systematic bond-centered techniques, briefly 
described in the following.

The arguments present above imply an atom-centered view, as the local 
density of states is a per-atom quantity. For a slight shift in perspective, we 
abandon this band-centric view and define Eband à Ebond á Eprom where the 
bond energy 

Ebond à
1
2
X

i6àj
2ρiαjβHiαjβ (87) 

and the promotion energy Eprom contains the diagonal terms, i.e. the on-site 
energies of the tight-binding model. This construction is the basis of the tight- 
binding bond model [269]. Equation (87) for the bond energy is appealing, 
because it introduces the bond i-j as the central quantity: It has the appear-
ance of a pair interaction with pair energy Eij à 2ρiαjβHiαjβ; compare it for 
example to the attractive part of the Tersoff potential given by Eq. (73). The 
term 2ρiαjβ is called the bond order. As we know from Tersoff’s potential, this 
bond order – or rather the bond order variable bij, Eq. (72) – depends on the 
environment of the specific bond and modulates its strength. The promotion 
energy is constant if local charge neutrality is imposed and can be ignored for 
the computation of forces and stresses [258].

We can write the density matrix as 

ρiαjβ à
Z

dε f ÖεÜniαjβÖεÜ with niαjβÖεÜ à hiαjδÖε� ĤÜjjβi; (88) 

which is easily seen by inserting this expression into Eq. (79). Note that 
written this way, the density matrix has a form similar to Eq. (80) and (81). 
The onsite terms ρiαiα correspond to the integral over the local density of 
states niαÖεÜ;niαiαÖεÜ up to the Fermi level, which are the number of 
electrons Niα in that orbital. We now consider the linear combination of 
orbitals j⌃i à Öjiαi⌃ jjβiÜ=

ÅÅÅ
2
p

that correspond to bonding (á ) and anti- 
bonding ( � ) states [203]. Then n⌃ à 1

2 niα á njβ
�  

⌃ niαjβ and hence 
niαjβ à Öná � n�Ü=2. The bond-order can therefore be written as 

2ρiαjβ à Ná � N�; (89) 

with N⌃ à
R

dεf ÖεÜn⌃ÖεÜ. This is the difference of electrons in anti-bonding 
(N�) and bonding (Ná) orbitals. We conclude that Pauling’s interpretation 
[247] of the bond-order was indeed correct.

Exploiting the symmetry of the i-j bond, the off-diagonal Hamiltonian 
block Hij can be diagonalized (by rotating into the frame of the local bond 
i-j), allowing the pair energy to be written as [270], 
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Eij à 2HσÖrijÜρσ;ij á 2HπÖrijÜρπ;ij á 2HδÖrijÜρδ;ij; (90) 

the sum of σ, π and δ contributions to the bond energy. Pettifor, Aoki, 
Horsfield and coworkers [257,258,271,272] developed a systematic expan-
sion of the bond-order in the moments computed on atom i and j. 
To second order, they find ρσ;ij / Öμ

Ö2Ü
iσ á μÖ2Üjσ Ü

�1=2, leading to an expression 
similar to Tersoff’s total energy (if π-bonds are neglected). Since this 
pioneering work, higher-order bond-order potentials have been developed 
for a number of elements and elemental combinations, such as hydrocar-
bons [273–275], molybdenum [276], gallium-arsenide [277], silicon [278], 
tungsten [279], iron [280], cadmiun-telleride [281], and aluminum-copper- 
hydrogen [282–284].

6. Properties of pair and many-body potentials

6.1. Binding energy, lattice constants, and equation of state

The properties of crystals with a single atom in the primitive cell that 
interact through a smooth, short-range two-body potential U2ÖrÜ [with 
a single (steep) minimum in U2ÖrÜ and a single extremum in relevant 
higher-order derivatives] are severely restricted. We start by discussing the 
cohesive energy, arguably the most important property of any structure. For 
a perfect mono-atomic and thus non-ionic crystal, in which each atom is 
equivalent, the energy per atom in the (effective) pair-potential approxima-
tion can be given by 

UpaÖa0Ü à
1
2
X

sà0
ZsU2ÖasÜ : (91) 

Values for Z0, Z1, a1=a0 are stated in Table 2 for mono-atomic cubic crystals 
along with other characteristic, dimensionless numbers, which will be 
introduced further below. Given that Z0 à 12 is the maximal coordination 
number, face-centered cubic (fcc) and hexagonal closed packed (hcp), 
which has the same Z0, Z1, and a1=a0 as fcc, are the generally preferred 
structures of mono-atomic systems with short-range interactions. What 
phase wins depends on the precise functional form of the potential but 
also where and how the potentials are cut off, as discussed in more detail in 
Sect. 9.1.

To lowest order, i.e. when only including interactions within the first 
shell, the nearest-neighbor spacing satisfies a0 à r0, where r0 is the location 
of the energy minimum of the dimer. Like nearest neighbors, more distant 
neighbor shells are located at a negative potential energy. As a result, the 
total binding energy per atom in the solid will exceed Z0 times the energy 
per atom in the dimer, which is U0=2. Due to the further shells sitting in the 
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attractive part of the potential, the lattice will contract. As a consequence of 
this contraction, nearest neighbors are pushed more deeply into their 
repulsive interaction, which then leads to an increase of the bulk modulus 
B, despite counteracting effects of other shells. The inequalities 

aeq
0 =r0 ,< 1 (92a) 

Ueq
paÖZ0Ü=U0 ,! Z0=2 (92b) 

Beq ,! Z0
kdr2

0
18veq

pa
(92c) 

encapsulate this discussion, Ueq
pa being the binding energy per atom (in the 

ground state with nearest-neighbor distance aeq
0 ) and veq

pa is the volume per 
atom. Values of vpa for different structures are tabulated in Tab. 2. These 
equations are expected to hold for non-ionic solids interacting through pair 
potentials. kd is the curvature of the pair potential in the minimum, which 
could be called the dimer spring constant. It takes the value 

kd à mnU0=r2
0 (93) 

for the pair potentials considered here, at least in their most simple form 
without amendments. The presented treatment is easily generalized to 
simple binaries as long as Coulomb interactions are negligible.

Ionic crystals with long-range Coulomb interaction must be treated 
separately, because Zs can be of order Z0as=a0 so that the sum over shells 
is not convergent. Summing up Coulomb interactions (in periodically 
repeated systems) is an entire industry by itself [285,286]. However, as 
long as crystallographic positions are fixed relative to the unit cell, it is 
clear that the sum over 1=rm terms is a geometric factor depending on the 
lattice times 1=am

0 . To keep the treatment analytically amenable, we only 
consider nearest-neighbor repulsion plus Coulomb interaction and approx-
imate the energy per atom as 

UpaÖa0Ü ⇡ Z02U0n� 1enÖ1�a0=r0Ü � αM8πε0Q2a0; (94) 

where αM is the geometric factor for m à 1, the Madelung constant. Since 
αM <Z0 for all (simple) crystal structures, it is clear that the absolute ratio of 
Coulomb and repulsive potential is reduced compared to that of the dimer. 
This leads to a reduction of the energy per atom in the crystal and conse-
quently to an inversion of all three inequalities listed in Eq. (92a). Eq. (94) is 
not necessarily sufficiently accurate to determine what phase an ionic crystal 
assumes as a function of the parameter n [48,150]. To this end, it is 
necessary to also include dispersive interaction and repulsion between 
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anions plus potentially many-body terms [150], which are frequently cast 
through so-called breathing and deformable shell models as described in 
Sect. 4.4.

Using Mie instead of exponential repulsion and restricting repulsion to 
nearest neighbors allows simple closed-form expressions to be 
derived [153], 

aeq
0 =r0 à

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
Z0=αM

n�1
p

(95a) 

Ueq
pa=U0 à

ÅÅÅÅÅÅÅÅÅÅÅÅÅ
αM=Z0

n�1
p

αM (95b) 

Beq à
ÅÅÅÅÅÅÅÅÅÅÅÅÅ
αM=Z0

n�1
p

αM
n

n� 1
kdr2

0
18vpa

; (95c) 

where kd follows from Eq. (93). As expected, the gain in energy and stiffness 
obtained through the condensation from molecules into crystals is much 
reduced compared to that of short-range potentials.

Given UpaÖa0Ü, the equation of state (EOS) at small temperature follows 
from p à �@Upa=@vpa, which can be evaluated quite easily through 

pÖvpaÜ à �
@Upa

@a0

@a0

@vpa
(96) 

when using the volumes per atom vpaÖa0Ü listed in Tab. 2. The lean pair 
potentials introduced here allow the EOS of our four reference compounds 
to be reproduced quite accurately in their thermodynamically stable phase, 
as is revealed in Figure 10. However, for copper and carbon, the obtained 
parameters differ quite substantially from those describing the dimers, while 
those for NaCl and Ar differ only by roughly 10–20%. Pertinent numbers 
are listed in Tab. 1.

The apparent dimer binding energies U0 deduced from the fits are 
decreased by a factor of approximately 2.2 for carbon (Z0 à 4) and by 
a factor of 4.6 for copper (Z0 à 12). Both numbers can be crudely rationa-
lized using the EAM/TB2M potential proposed by Ducastelle (see Sect. 5.2), 
which predicts the binding energy per atom to increase a little less slowly 
than with 

ÅÅÅÅÅ
Z0
p

.
Frequently, a measured or computed EOS is also fitted to the so-called 

“universal equation of state” [249,293,294] given by 

pÖVÜ à 3B0
1� η

η2 e3 ÖB00�1Ü Ö1�ηÜ=2 (97) 

Here, B0 is the bulk modulus at p à 0 and η à
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
V=VÖp à 0Ü3

p
, while B00 is 

the change of the bulk modulus @B=@p at p à 0 and constant temperature, 
which is ideally zero temperature when gauging interaction parameters 
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from lattice sums. In fact, the reference data for carbon [295] in Figure 10 
was produced using Eq. (97) whose adjustable coefficients had been gauged 
on experimental data.

As can be seen, also an ionic solid satisfies the universal EOS under 
compressive stress reasonably well, although its two-body potential is 
marked-ly distinct from that of carbon or copper. Thus, inverting an EOS, 
in particular when obtained solely under compression, allows potentials to 
be tested but not to be parametrized. Using first-principle methods, the EOS 
can be extended to tensile stresses, thereby providing useful information 
also on the attractive part of the potential. Careful parametrizations of 
potentials make use of such data [296–299].

Even though pair potentials can be used to fit the EOS of individual 
crystalline structures, they are not transferable between them. As 
described in detail in Sect. 5, many-body terms are required for trans-
ferability. We will now analyze the Ducastelle potential as one of the 
simplest many-body formulations for metals. In the nearest-neighbor 
approximation, the per-bond energy of crystalline Ducastellium, Eq. 
(60), can be approximated as 

UpbÖa0;Z0Ü à
U0

m� n menÖ1�a0=r0Ü � 1ÅÅÅÅÅ
Z0
p nemÖ1�a0=r0Ü

⇢ �
: (98) 

It follows for the equilibrium bond length that 

0.1 0.2 0.3 0.4 0.5 0.6
1-V/V0

10-2

10-1

100

101

p 
/ B

Ar Cu

C

NaCl

Figure 10. Equation of state, pÖVÜ, for C, Cu, Ar, and NaCl as determined experimentally and by 
pertinent fits assuming pair-additivity of potentials of the same functional form as in Figure 3 
and with parameters listed in Table 1. The pressure p and the volume v are normalized to the 
zero-pressure bulk modulus B and volume v0, respectively, which the fits were constrained to 
reproduce. Black full circes [287] and open circles [288] show reference data for fcc argon, 
orange plus signs [289] and crosses [290] for fcc copper, red diamonds [295] for carbon in the 
cubic-diamond structure as well as blue, full [291] and open [292] squares for NaCl in the rock 
salt structure.
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aeq
0 ÖZ0Ü

r0
à 1á 1

2
ln Z0

n�m (99) 

and for binding energy 

Ueq
paÖZ0Ü à U0Zμ

0=2 or Ueq
pbÖZ0Ü à U0Zμ�1

0 (100) 

with μ à Ön=2�mÜ=Ön�mÜ< 1=2. Moreover, the generalized stiffness of 
the potential, 

keqÖZ0Ü à mnUeq
pbÖZ0Ü=r2

0 ; (101) 

is identical to that of a pair-potential, see Eq. (93). Corrections due to 
next-nearest and more distant shells alter these results. However, all 
trends are robust and reflect the results for copper shown in Figure 9— 
as well as for a few other metals condensing in fcc. These trends are 
a logarithmic increase of aeq

0 with Z0 and an algebraic increase of Ueq
pa 

with a power less than 1=2. It is important to note that for n à 2m we 
obtain μ à 0, and Eq. (100) shows that the cohesive energy is then 
independent of crystal structure.

Note that the same trends are also observed by carbon (also shown in 
Figure 9), despite the fact that it cannot be described by Ducastelle’s 
potential, as carbon’s ground-state structures are open crystal lattices. To 
understand covalent bonding, it is instructive to consider the energy per 
bond 

UpbÖa0Ü à
U0

n�m menÖ1�a0=r0Ü � �bnemÖ1�a0=r0Ü
n o

fcÖrijÜ (102) 

of nearest-neighbor Tersoffium, Eq. (74). We directly see that we recover Eq. 
(98) of Ducastellium for b à 1=

ÅÅÅ
Z
p

0, illustrating the relationship between 
the bond-order variable and the coordination number, see also Ref. [248]. 
The bond-order variable �b typically does not depend on bond-length, but 
only on crystal structure. We can therefore read-off the equilibrium bond 
length as, 

aeq
0

r0
à 1� ln �b

n�m : (103) 

Similarly, the energy per bond scales as 

Ueq
pbÖ�bÜ à U0�b2�2μ; (104) 

explaining the rough structural trends in Figure 9 for carbon. We can 
combine Eq. (103) and (104) to eliminate �b, yielding 
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aeq
0

r0
à 1� 1

n ln
Ueq

pb

U0
; (105) 

which is displayed in Figure 9h.
These analytical equations are useful in parameterization of these poten-

tials. Albe [296,297,299] developed a parameterization procedure, based on 
data of ground-state crystalline structures such as the one shown in Figure 9. 
The first step is fitting the parameters n to the universal energy-bond 
relation given by Eq. (105). Albe calls the corresponding plot, such as 
Figure 9d for copper and 9h for carbon, a Pauling plot. The remaining 
(pair) parameters U0, m and r0 are then adjusted to the binding energy, 
bond length and vibrational frequency of the dimer. In a final step, the 
parameters that enter the specific calculation of �b are fitted to reproduce 
detailed structural information in the database.

6.2. Defects, melting, and boiling

Reproducing defect energies correctly constitutes an important benchmark 
for potentials, as their proper description is required for the atomistic 
modeling of thermodynamic and non-elastic mechanical properties. 
Defects are broadly characterized into point, line, and planar defects. 
Reproducing their energies accurately is more difficult than reproducing 
an EOS, because atoms near defects lack the symmetry of ideal crystal-
lographic positions. Parameters having no effect on the EOS for reasons of 
symmetry and a small effect on lattice vibrations can become important for 
the proper description of defects, mostly because defects imply 
a coordination change and might be accompanied by the generation of 
radicals or ions in covalently bonded systems.

Vacancies are the most important point defects in simple crystals. Two 
values for their energy are associated with it, i.e. the vertical vacancy energy, 
UÖ0Üvac, for which the lattice in the vicinity of the removed atom is kept 
undistorted, and the true defect energy, Uvac, which is obtained after lattice 
relaxation. The OÖ10%Ü reduction of the defect energy due to relaxation can 
be deemed irrelevant when studying trends, in contrast to the 10 to 105 fold 
increase in computing and human time to estimate that correction to within 
10%. Different system sizes would have to be selected, each structure be 
relaxed to the energy minimum, and results be extrapolated to the thermo-
dynamic limit, while assessing a vertical defect energy requires merely one 
calculation in addition to the ones finding the crystal’s ground state.

For a short-range potential without explicit angular dependence, the 
energy per atom can be estimated with Ueq

pa à U0Zμ
0=2 – see also Eq. 

(100) –, where, however, μ à 1 for pair potentials and μ ,< 1=2 for 
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Ducastellium. Removing an atom from an ideal lattice site and placing it 
hypothetically into another ideal lattice site makes its Z0 ditched neighbors 
lose one bond each, leads to an estimate of, 
Uvac à Z0fUeq

paÖZ0Ü � Ueq
paÖZ0 � 1Üg, which becomes 

UÖ0Üvac à
U0

2
Z0 Zμ

0 � ÖZ0 � 1Üμ
�  

⇡ μUeq
pa (106) 

where the latter approximation applies if Ö1� μÜ=Z0 ⌧ 1. Thus, UÖ0Üvac à Ueq
pa 

for a pair potential (μ à 1), while for μ< 1, our back-of-the envelope 
calculation provides a lower, yet good estimate for UÖ0Üvac. Taking into account 
that the bond lengths of the ditched neighbors is not at the perfect bond 
length for their new Z0 � 1 coordination would lead to a relative increase of 
UÖ0Üvac of typically less than 5% in a Ducastelle potential. Figure 11 confirms 
the predicted trend that μ0 à UÖ0Üvac=Ueq

pa is distinctly less than unity for simple 
metals, in fact their μ0 falls slightly below 0.5, which is the upper bound for μ 
approached in the limit n, mentioned in the text below Eq. (100). Group 14 
elements have substantially larger μ0 than metals, however, μ0 and μ cannot 
be expected to be similar, whenever bond-angle corrections matter. Only 
argon out of the elements considered in Figure 11 has a vertical defect 
energy reasonably consistent with the pair-potential assumption.

One reason why defect energies in metals are important is that they are 
believed to correlate with the melting temperature Tm: Górecki found the 
vacancy concentration just below Tm in many different metals to be n⇤vac ⇡
0:0037 [303] . Estimating the relative number of vacancies with nvac ⇡
expÖ�βUvacÜ would yield kBTm=Uvac à �1= ln n⇤vac ⇡ 2=11, which roughly 
overestimates the melting temperatures reported in Figure 11 by a factor of 
two. Thus, the simple picture laid out here is only half the story, or, depending 
on viewpoint, it is already half the story. Given the utmost simplicity of the 
arguments, we would consider the melting-temperature glass to be half full.

To extend the discussion to the boiling (or sublimation) temperature, Tb, 
the temperature has to be identified at which the Gibb’s free energy G of the 
condensed phase equals that of the gas. At low temperature, G can be 
crudely estimated with the cohesive energy of the crystal and at high 
temperature with � Tb times the entropy of an ideal gas. This gives a quasi- 
linear relation between Ueq

pa and Tm with corrections logarithmic in Tm and 
p. When checking data for metals, we found them to obey a kBTb ⇡ 0:06Ueq

pa, 
surprisingly well. Unfortunately, we did not find a name for this relation, 
although a similar rule certainly exists in the literature. Even water does not 
stray too far from this finding with kBTb=Ueq

pa ⇡ 0:054, when expressing its 
cohesive energy of Upm ⇡ 0:6 eV [304] in ice Ih per molecule (pm) rather 
than per atom.
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Given the discussions on melting and boiling temperatures, their ratio 
rmb :à Tm=Tb must be expected to correlate with the exponent μ. For our 
representative pair-potential element argon, melting and boiling tempera-
ture differ only by 4% at atmospheric pressure. In contrast, 
rmbÖalkaliÜ ⇡ 0:3, rmbÖearth alkaliÜ ⇡ 0:6, and most transition metals 
being somewhere in between.

Of course, much more detailed analyses are required to estimate reliably 
melting temperatures and boiling points from defect and cohesive energies 
than the crude arguments presented above. The trouble is, as with poten-
tials, that improving estimates even marginally requires a substantially 
increased effort. Thus, for the sake of brevity, we cannot go into the required 
level of detail and instead invite the reader to conduct the fun/instructive 
exercise of melting and vaporizing a two-dimensional crystal in a simulation 
cell having many times times the crystal’s volume: one time with a simple 
pair potential and one time with a generic Ducastelle or related potential. If 
done correctly, interesting insights can be gained, for example, on long- 
range positional and orientational order in two spatial dimensions, or the 
exceedingly small densities required to make the metal gas consist of 
monomers rather than of dimers, revealing one more reason why the 
above presented reason for the correlation between Tb and Uc should be 
bad. For reasons of brevity, we do not only abstain from a more detailed 

Figure 11. Melting temperature in units of cohesive energy as a function of UÖ0Üvac=Ueq
pa for 

a variety of elemental systems condensing in bcc (crosses), fcc (triangles), and diamond-cubic 
structure (dc, diamonds). Melting temperatures and cohesive energies were taken from Kittel’s 
book [300]. Vertical defect energies are provided for Al [301], Au [301], Pt [301], Cu [301], Pb 
[301], Pd [301], Na [302], Ta [301], W [301], Cr [301]. For C, Si and Ge, Ueq

pa values were calculated 
using DFT-LDA. In addition, the vertical defect energy reduction of Ar was deduced from the 
ATM parameters from Ref. [147].
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analysis of the effects of the Ueq
pa / Zμ scaling, but also from reporting trends 

for surface or grain boundary energies, although both are central to the 
properties of materials.

6.3. Elastic properties

Deforming a solid from its equilibrium geometry requires the application of 
external stress. For a macroscopically affine deformation it can be deduced 
from elastic tensors. A brief introduction to them including their relation to 
pair potentials is given in Sect. 3.5. While we have already elaborated on the 
Cauchy relations, it seems much less appreciated that the pair-potential 
approximation also places rather tight bounds on C11=B.

The bulk modulus B is easy to evaluate given the equation of state, such as 
Eq. (96), 

B à �vpa
@p
@vpa

: (107) 

The first constraint to be discussed is the ratio C44=B for fcc crystals 
interacting with short-range potentials. Using the results compiled in Eq. 
(35), a first estimate of C44=B à 3=4 is obtained using the Cauchy relation 
C44 à C12 and B à ÖC11 á 2C12Ü=3 valid for cubic systems interacting 
through pair potentials. This is already close for to the value of C44=B ⇡
0:8 for fcc Lennard-Jonesium and, by fortuitous error cancellation, even 
closer to the experimental value for argon.

There are two leading-order corrections to the nearest-shell approxima-
tion, which both decrease C11 relative to C12 and thus C44 so that the exact 
value for C44=B is increased compared to the nearest-shell approximation. 
First, the effective spring constant k1 associated with the next-nearest neigh-
bor shell is slightly negative, because next-nearest neighbors are located well 
past the inflection point of the LJ potential at zero external pressure and even 
further beyond the point at which kÖrÜ becomes negative. Numerically, we 
obtain k0 ⇡ 129U0=r2

0 and k1 ⇡ �4:8U0=r2
0 when using a0=r0 à 0:971 for 

fcc Lennard-Jonesium. This accounts for more than 50% of the difference 
between the nearest-shell approximation and the exact value for fcc Lennard- 
Jonesium. Second, the dominant effect of more distant neighbors is similar to 
an isotropic compressive stress pc, pushing the nearest neighbors more deeply 
into the repulsion and leading to a reduction of C11 by pc and an increase of 
C12 and thus C44 by the same amount, see also Eq. (39).

The second constraint to be discussed for a short-range potential is the 
stability of the bcc phase. In the nearest-neighbor approximation, 
C11 à C12, which means that the tensor of elastic constants is not positive 
definite thereby violating the Born mechanical stability criteria [140]. 

ADVANCES IN PHYSICS: X 67



Including the second shell helps stabilizing bcc, but only if the interaction is 
sufficiently long ranged so that k1 is positive. For a Morse potential, we find 
C12 to be less than C11, once n ,< 9 and the binding energy per atom 
E0ÖbccÜ!E0ÖfccÜ for n ,< 6:1, at which point not even 20% of the interaction 
energy is associated with the nearest-neighbor shell. Thus, stabilizing bcc 
over fcc using a two-body potential straying not too far away from 
a physically meaningful, atomistic potential does not appear to be possible. 
This can differ for positively charged colloids repelling each other through 
Yukawa potentials [158].

Some solid-state physics textbooks argue that a positive next-nearest 
neighbor coupling k1 stabilizes the simple cubic structure against shear, 
polonium being the single element in the periodic table adopting it as 
ground state. However, for k1 to be positive at a next-nearest-neighbor 
distance of r1 à

ÅÅÅ
2
p

a0, the Morse exponent has to be as small as n ⇡ 2:34, 
which is much smaller than any reported value for a Morse type potential 
that we have come across.

Given the general form of an EAM or TB2M potential of Eq. (57), elastic 
constants of simple crystals can be found quite easily with the formalism laid 
out in Sects. 3.5, 
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where F0Öρ0Ü and F00Öρ0Ü are the first and second derivative of FÖρÜ evaluated 
at ρ0, respectively, ~U2ÖSÜ à U2ÖrÜ and ~f ÖSÜ à f ÖrÜ. In the nearest-neighbor 
approximation, this expression simplifies to 
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Similar results for elastic tensor elements have been identified numerous 
times [45,46] including a derivation using the shell-tensor concept [190], 
however, mostly for stress-free references. The violation of the Cauchy 
relations results exclusively from the last summand on the rhs of Eq. 
(109), e.g. for systems with inversion symmetry, 
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in the nearest-neighbor approximation. Thus, if the embedding function 
FÖρÜ has a positive curvature at ρ0, as is the case for a Ducastelle potential 
with FÖρÜ / � ÅÅÅρp , then C12 !C44 follows for cubic systems. The symme-
trized shear modulus, GÖC44 á CsÜ=2, where the so-called tetragonal shear 
modulus is defined as CsÖC11 � C12Ü=2, can be shown to obey G à αμB in 
a nearest-shell Ducastelle potential, where α à 9=8 for fcc and α à 1 for bcc 
[138]. Thus, the most generic EAM or TB2M potential predicts G=B to scale 
linearly with μ, just like the vacancy energy. In fact, simple metals obey this 
trend, as demonstrated in Figure 12. Nonetheless, this correlation must be 
taken with a grain of salt, since bcc is not elastically stable in the nearest- 
neighbor approximation.

In contrast to the embedding term, angular terms as those used by 
Keating, Stillinger-Weber, or Tersoff, counteract shear, so that they lead to 
a Cauchy violation having the opposite sign as that in Ducastellium and 
related potentials.

6.4. Plasticity

Plasticity and ductility hinge on the ability of solids to introduce low- 
dimensional structural defects, in particular dislocations, whose presence 
is needed to prevent metals from brittle fracture under loading. The more 
easily (non-planar) defects are inserted into a crystal, the more ductile it will 
be. In a very microscopic picture, metals can be argued to be ductile, because 
“delocalized electrons allow metal atoms to slide past one another without 
being subjected to strong repulsive forces that would cause other materials to 
shatter” [306]. However, going directly from the delocalized nature of the 
electrons in metallic bonds is somewhat of a big step and does not provide 
any guidelines allowing the degree of ductility to be assessed.

In this section and the literature reviewed therein, vacancy energies in units 
of the cohesive energy and shear elastic constants in units of the bulk modulus 
are found to be relatively small if interactions are isotropic and bonds weaken 
with increasing coordination number. Both ratios turn out to be of similar 
order, and, generally less than 1/2 for most metals. Given that the Poisson’s 
ratio of an isotropic material satisfies ν à Ö3=2� G=BÜ=Ö3á G=BÜ, it can be 
seen that the low limit of G=B! 0 bring the Poisson’s ratio close to that of 
a liquid, i.e. to ν à 1=2, while the lower limit for ν is just a little above the 
value valid for pair potentials ν à 1=4. Thus, the smaller G=B, the more 
“liquid-like” the elastic tensor, which, of course, also implies that the energy 
to introduce a dislocation, which is linear in G, is relatively small. In fact, the 
elemental solids with a small μ0 :à G=B ratio, but also the ones with a small 
Uvac=Uc, are by and large more ductile than the ones with a larger μ0. A nice 
example is niobium, which happens to be quite ductile despite condensing in 
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bcc, which, unlike fcc, lacks close-packed glide planes. Of course, assessing the 
effect of defects on the plasticity of a material requires the knowledge of many 
more properties than the dimensionless ratios G=B, kBT=Uvac, and so on 
[307,308], however, the trends reflected in our examples, which were not 
cherry picked, can certainly be understood from these numbers.

The objective of much atomistic simulation work on metals is to repro-
duce thermal and mechanical properties of specific metals and their alloys 
[35,308]. The attempt to rationalize trends has become a secondary objec-
tive, which, however, is central to our overview article. Since we are not 
aware of a work asking the question how the choice of the potential affects 
the outcome of a typical tensile-load experiment given a certain micro 
structure, we took the liberty and produced such data. The purpose is to 
demonstrate that the trends, which are discussed in regard to ductility, are 
indeed borne out. To this end, we melted two-dimensional Ducastellium 
(μ à 0:36, typical for copper, with N ⇡ 33; 000 atoms) and quenched it to 
small temperature, whereby crystalline grains of different orientation were 
produced. The such produced samples, were then subjected to a tensile 
loading, where the velocity of a few hundred atoms in the outermost layer 
were constrained to assume a constant value in the direction of loading, and 
a uniform deformation was simultaneously applied to the rest of the sample. 
The exercise was repeated for Lennard-Jonesium, in which case the 
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Figure 12. Vertical defect energy in units of cohesive energy as a function of the symmetrized, 
dimensionless shear modulus G=B for a variety of elemental systems condensing in bcc 
(crosses), fcc (triangles), and diamond-cubic structure (dc, diamonds). Elastic constants data 
for all chosen elements but Ar were taken from Ref. [68]. Data for C44=C12 for Ar from Ref [305].. 
Vertical defect energies are provided for Al [301], Au [301], Ni [301], Cu [301], Li [302], K [301], 
V [301], Nb [301]. The vertical defect energy reduction of Ar was deduced from the ATM 
parameters from Ref. [147]. For C, Si, Ge and Sr, vertical defect energies were produced using 
DFT-LDA, with 4⇥ 4⇥ 4 super-cell to minimize the interaction between a vacancy site and its 
image. The full and dashed gray lines show the prediction of the Ducastelle potential for fcc and 
bcc, respectively.
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configurations were rescaled and allowed to relax before loading. The 
orientation of the graines remained unaltered during the relaxation. 
Results are shown in Figure 13.

Figure 13 reveals very clearly that the pair-additive Lennard-Jonesium 
shows the characteristics of brittle fracture, while the isotropic, non-pair- 
additive Ducastellium produces a force strain relation akin of a ductile 
metal. In addition, the pair-additive Lennard-Jonesium breaks along exist-
ing grain boundaries without a change of internal grain boundary structure, 
while Ducastellium undergoes massive reconstruction, the precise nature of 
which cannot be predicted, as it changes with the random seed for the 
thermostat. Of course, these two-dimensional simulations are merely 
a cartoon for real solids, among other reasons because stress-induced 
recrystallization in two dimensions occurs much more easily than in 
three, due to a small (hyper-) surface to volume ratio.

7. Charge-transfer potentials

It is sometimes insufficient to treat atoms as if they had a constant (integer) 
charge. This calls for methods allowing charge assignments to be made on the 
fly. Adjustable coefficients entering the charge-transfer part of a potential must 
be gauged on given reference data as any other force-field parameter. One 
possibility is to identify them such that inter-molecular forces or interaction 
energies from a training set are matched as closely as possible, which, however, 
is rarely advisable since errors in certain parts of the regular part of the potential 
may be compensated by false charge assignments, which then jeopardizes the 
transferability. This is why reasonable, directly determined reference charges are 
needed in the training of charge-transfer potentials.

One reason why knowing partial charges accurately – whatever this 
means – is important, is that ionic interactions, so they are present in 
a system, are on par with covalent interactions. This is easily seen by compar-
ing their magnitude. The covalent bond in H2 has a binding energy of 4.74 eV. 
The Coulomb interaction in a NaCl molecule with a bond length of a0 à 2:36 
Å is about 6.1 eV, after subtracting sodium’s ionization energy, INa à 5:14 eV, 
and adding chlorine’s electron affinity, ACl à 3:61 eV, an energy gain of 
4.57 eV remains. This needs to be contrasted to typical LJ interaction para-
meters of order 0.01 eV. Thus, even minor changes in partial charges easily 
alter energies more than relatively large changes of LJ prefactors.

7.1. Determination of reference charges

In the absence of periodic boundary conditions, a charge distribution can be 
rigorously characterized in terms of its net charge, dipole moment, quadru-
pole tensor, and so on. Nonetheless, there is no unique way to assign atomic 
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charges, atomic dipoles, etc., in a many-body system. Yet, the concept of 
formal and partial charge is central in chemical physics and physical chem-
istry. As a consequence, many different charge-assignment schemes have 
arisen to achieve the ill-defined. In fact, any pragmatist simply must attempt 
to assign atomic charges allowing interatomic forces to be computed accu-
rately while providing values that satisfy chemical intuition. For example, 
when trying to match the vibrational frequency, the bond length, and the 
binding energy of a NaCl molecule with a three-parameter potential, be it 
Mie or simple Buckingham with two parameters for repulsion plus one 
independent partial charge, the latter turn out in the vicinity of unity so that 

Figure 13. Comparison of two in-silico tensile tests. Both simulations started from identical 
microstructures. The left row assumes Lennard-Jones interactions, the right - a generic model 
originally proposed by Ducastelle, which later formed the basis for embedded-atom and Finnis- 
Sinclair potentials. Parameters of Ducastelle potential were taken from Ref. [222]. Simulations 
were run using LAMMPS [380,381]. Colors indicate the orientation of grains, i.e. the angle ָi 
obtained when averaging Φi expÖi6ָiÜ :à hexpÖi6φijÜi over all atoms within a cutoff, where φij 

denotes the angle of a bond w.r.t. x-axis. Atoms, for which, Φi < 0:75, are depicted in black.
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chemical intuition is satisfied. Even more, the such obtained parameters 
allow quite reasonable predictions to be made, for example, for the lattice 
constant, bulk modulus and in fact, all three independent elastic tensor 
elements of NaCl in the rocksalt structure, even if truly accurate potentials 
require (many-body) corrections. We note in passing that producing num-
bers supporting this claim is a great exercise for students and instructors 
alike. At the same time, deducing charges from molecular dipoles, which 
yields QNa à 0:75 e when ignoring the induced dipole on the Cl � ion and 
making students deduce that a bond in NaCl to be 25% covalent is a task, 
which we deem halfway between useless and insane, even if countless 
chemistry lectures and quite a few text books provide discussions along 
such lines. The above back-of-the-envelope calculation simply neglects the 
high polarizability of anions [88,91].

Complications in assigning partial charges arise as soon as partial charges 
are not close to an integer value, which happens when atoms with electro-
negativity differences of, say, ΔI ,! 0:5 eV, are present, simple alkali halides 
being the major exception to this rule. Unfortunately, very few partial 
charges are assigned as easily as those for sodium or chlorine atoms in the 
NaCl molecule. As argued at the beginning of Sect. 7, it is usually beneficial 
to separate charge assignment from the construction of the potential. 
Existing methods to compute reference charges can be crudely categorized 
into those in which atomic charges are deduced from an analysis of (i) 
a representation of the wave function (Mulliken [309] and Löwdin [310]), 
(ii) the electronic density (Bader [311] and Hischfeld [312]), (iii) the elec-
trostatic potential (ESP), (iv) displacement-induced changes in polarization 
(Born [75]), and frequently forgotten (v) experiment [313]. These methods 
will be sketched next. For more detailed overviews, see Ref. [313–315].

The Mulliken [309] definition of the partial charge starts from the 
representation of the total wave function as a linear combination of atomic 
orbitals. The charge associated with each orbital is assigned to the atom, 
however, results are far from unique, in particular when using large basis 
sets. Löwdin [310] removed a certain degree of ambiguity from Mulliken’s 
definition that originated from the non-orthogonality of the functions 
spanning the basis set. However, uncertainties remain. Bader [311] parti-
tions the space into regions such that each atom is assigned the charge 
density in its vicinity up to the points at which the charge density passes 
through a local minimum. However, this procedure ignores the possibility 
of atomic charge distributions to interpenetrate. It yields finite charges for 
the promolecules, whose charge density is defined to be the superposition of 
the atomic charge densities [316]. Hirshfeld [312] originally assumed each 
atom to own space with a weight proportional to the electronic density of 
the neutral atom, which, however is clearly inappropriate for ions. For 
example, in an alkali hydride, H� would be assigned a smaller radius than 
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the metal cation. Thus, in more advanced methods, the atomic charge 
densities are replaced with radially symmetric weighting function that are 
determined self-consistently [312,317]. In such “iterative stockholder 
approaches”, it remains challenging to identify good trade-offs between 
the ESP accuracy and the transferability of the charges [318]. In conventinal 
ESP schemes, atomic charges are adjusted to best match the ESP a save 
distance away from the nuclei, e.g. outside the atomic van-der-Waals radii. 
This becomes problematic for condensed phases, in which such safe dis-
tances are sparse or even non-existent, but also for large molecules with 
hidden atoms. Even worse, the ESP appears to be ill-defined up to a constant 
in periodic systems so that partial changes can only be gauged on ESP 
differences [319]. Born effective charges reflect the change of polarization 
occurring in response to atomic displacements, which, for periodic struc-
tures would be analyzed in terms of the Fourier transform of the dipole 
moment at small wave numbers. However, since both dipoles and displace-
ments are vectors, Born charges are not scalars but tensors of rank two, 
unless the system is so highly symmetric that all eigenvalues of the tensor are 
identical. In addition, Born charges can cast changing atomic dipoles as 
effective charges, which can lead to charges exceeding the formal oxidation 
number. Central ways to deduce partial charges from experiment [313] 
include (i) the matching of electrostatic multipoles, which ultimately is 
a limiting case of an ESP method, (ii) Bader-type analysis of the charge 
density deduced from x-ray diffraction patterns, but also (iii) a combined 
analysis of phonons and dielectric response functions.

Quite a few authors claim to have identified the most meaningful way to 
assign partial charges. This can scarcely be true, since partial charges are ill- 
defined so that the optimal charge-assignment scheme depends on the 
relative weight of target properties. Moreover, the optimum method can 
also depend on the symmetry of the problem. Problems arising due to 
“falsely” assigning an induced dipole on an atom as a transferred charge 
vaporize for highly symmetric structure, in which the lowest-order allowed 
multipole can be a hexadecupole. Unfortunately, separating atomic dipoles 
from charge transfer is even difficult for diatomic molecules, which could 
otherwise serve as a well-defined reference system on which charge- 
assignment schemes can be gauged.

An optimum choice for a charge to be used in a force-field based 
simulation may also depend on whether polarizable dipoles are included 
or neglected so that the optimum reference-charge-determination method 
may depend on the precise nature of the force field wanting to be parame-
trized. As a consequence, we are neither willing nor able to express an 
opinion if any of the sketched methods is all in all the optimum choice 
and believe that it has to be made case by case.
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7.2. Regular charge-equilibration approaches

In the ground-state of a full quantum-mechanical system, the functional 
derivative of the energy E w.r.t. the electron density 0 disappears, 
because ρÖrÜ minimizes E. In a coarse-grained description of the elec-
tron density in terms of a set of atomic charges, fQig, this minimization 
principle translates into what Mortier and varying co-authors [320,321] 
called the electronegativity equalization principle. Assuming that E can 
be expanded into powers of atomic charges, the ground state energy can 
be written as 

U à UÖQ à 0Ü á
X

i
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2
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while nuclear coordinates remain fixed. Charges adopt themselves such that 
they minimize U usually with the constraint of a fixed total charge. In Eq. 
(111), the electron density still minimizes the total energy for any fQg, albeit 
with the constraint imposed through the assigned partial charges. Thus, the 
parameters κi, χi, and Jij are implicitly defined from a mathematical point of 
view in Eq. (111), even if their numerical values depend on the method used 
to relate charge density and partial charges.

The chemical meaning of the parameters κi, χi, and Jij is best ascertained 
in limiting cases. Consider atom i to be neutral and isolated. If one electron 
is added to it so that Qi à �e, the energy decreases by its electron affinity Ai, 
while it increases by its ionization energy Ii when one electron is taken away 
from it. Thus, 

Ii à
κi
2

e2 á χi e (112a) 

Ai à
κi
2

e2 � χi e (112b) 

so that the so-called chemical hardness [322] turns out to be κi à ÖIi á
AiÜ=e2 and the electronegativity [323,324] χi à ÖIi � AiÜ=e. Meanwhile, Jij 
can be associated with the Coulomb potential given the charges Qi and Qj of 
two distant atoms i and j: 

Jij à
1

4πε0 rij
for rij !1 : (113) 
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The effect of an external electrostatic potential would have to be added to χi. 
The bold hope now is that partial atomic charges can be predicted using Eq. 
(111) and parameterizations, which do not stray too far away from Eqs. 
(112) and (113).

Rappé and Goddard [325] pioneered the use of the electronegativity 
equalization principle for the on-the-fly determination of atomic charges 
in molecular simulation and renamed the approach to charge-equilibration 
(QEq) method. To keep charges in (partially) ionic systems from blowing 
up, they suggested to shield the Coulomb interactions at short distances 
through two-electron Coulomb integrals of the form 

Jij à
1

4πε0

Z
d3ri d3rj

ρÖriÜρÖrjÜ
rij

; (114) 

where the charge densities ρÖrÜ are those associated with s-type Slater 
orbitals. This way, the Hessian, i.e. the matrix formed by @2U=@Qi@Qj 
remains positive definite even when atoms approach each other closely. 
Nonetheless, their claim that QEq “leads to charges in excellent agreement 
with experimental dipole moments and with the atomic charges obtained 
from the electrostatic potentials of accurate ab initio calculations” can be seen 
skeptically: Can Coulomb shielding be responsible for charges in the alkali 
metal halides to be so darn close to unity? And how can QEq reproduce the 
experimental observation that partial charges of atoms and ions in the gas 
phase adopt integer multiples of the elementary charge? In fact, QEq 
obviously predicts the ions of a neutral, dissociated NaCl molecule to each 
carry a charge of magnitude ÖχCl � χNaÜ=ÖκCl á κNaÜ ⇡ 0:4 elementary 
charges when truncating the expansion of Eq. (111) after the quadratic 
term [326].

QEq has multiple practical shortcomings, which all originate from the 
ease with which partial charge can be transferred from one atom to another 
one even over large distances. To name a few, it leads to the wrong 
dissociation limit of molecules [326], DFT having related issues, QEq 
makes the polarizability of polymers grow superlinearly rather than linearly 
in the chain length [327,328], and, similarly, solids adopt the dielectric 
response function of a metal [329], i.e. the dielectric constant of a QEq 
solid is infinitely large. Finally, QEq makes the dipole of alcohols be linear in 
the length of the hydrocarbon chain [330].

One fundamental problem of Eq. (111) is that the curve of lowest average 
energy of an isolated system versus the number of electrons turns out to be 
a series of straight lines when generalizing the Hohenberg-Kohn theorem to 
fractional particle numbers [331]. This property should be reflected in any 
coarse-grained approximation to DFT, which is built on the Hohenberg- 
Kohn theorem. However, Eq. (111) fails to do so.
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Despite the fundamental issues of QEq, metals can be discussed, since 
partial charges can be readily transferred over large distances. In a parallel- 
plate capacitance geometry, the length over which an external-field induced 
charge density decays into the solids scales approximately with 

ÅÅÅ
κ
p

[329]. In 
other words, QEq implicitly contains corrections to the behavior of ideal 
metals. Thus, mirror charges, or, rather the charge distributions producing 
the same electrostatic field outside of the metal as mirror charges do, are 
more smeared out in a QEq solid than in an ideal metal. To reflect this, the 
term κi to be used in a QEq simulation of metals may best be parameterized 
through an appropriate choice of the Thomas-Fermi screening length, 
which can benefit, e.g. the description of the interfacial interactions between 
a metal and an electrolyte [332]. For nanostructured electrodes, the finite 
density of states at the Fermi level leads to an additional contribution to the 
capacity of the device [333], which can be modeled by replacing the quad-
ratic term in Eq. (111) with an appropriate nonlinear function [334].

7.3. Charge-equilibration methods for non-metallic systems

Various ideas have been pursued to suppress the non-local charge transfer 
in QEq for dielectric systems. One of the first and most influential 
approaches, coined the fluctuating-charge (fluc-Q) model [335], imposes 
a charge neutrality constraint on individual molecules. Unfortunately, this 
bug fix does not remedy the superlinear scaling of the polarizability with the 
chain length of polymers. Moreover, the bonding topology of molecules 
needs to be defined making the simulation of bond breaking and formation 
difficult to describe.

To suppress long-range charge transfer, Chelli et al. [327] introduced 
atom-atom charge transfer (AACT) variables qij à �qji so that the charge of 
an atom is given by 

Qi à
X

j
qji; (115) 

where qji is the charge transferred from atom j to atom i. In the AACT 
method, the bond hardness, κij, replace the atomic hardness used in regular 
QEq so that a charge transfer costs a potential energy of κij q2

ij=2. The AACT 
model remedies all shortcomings in QEq approaches originating from non- 
local charge transfer, since the AACT method allows the latter to be 
(completely) suppressed with (infinitely) large bond hardnesses. However, 
for the Hessian of the AACT model to be positive definite, the bond hard-
ness terms have to be made so large that the dielectric constants of con-
densed phases, εr, turn out to be barely exceed unity [336]. Moreover, AACT 
suppresses the observed chain-length dependent polarizability of short 
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oligomers [328,329] and, similarly, produces a zero screening length in 
dielectrics [329]. Last but not least, AACT cannot be used to model the 
polarization of metals that occurs in response to an electric field.

Reintroducing the atomic hardness term to the AACT model leads to 
a new model, which Nistor et al. [336] first meant to call fluc-Q 2. 
Ultimately, they found the term split-charge equilibration (SQE) to be 
more appropriate, since the model is a split between two models and 
a “split charge”, qij, formerly known as AACT variable, is split between 
two atoms. Thus, their model reads 

U à UÖQEqÜ á
X

i;j ! i

κij

2
q2

ij; (116) 

where the Qi entering UÖQEqÜ, i.e. Eq. (111), are defined as in Eq. (115). 
Including finite bond hardness suppresses the superlinear scaling of mole-
cules with linear size [337], as is shown in Figure 14. The observable 
underestimation of the polarizability is supposedly due to the neglect of 
atomic polarizability.

Other charge-transfer models exist ensuring neutral separation limits. 
In one line of approach, chemical potential differences between distant 
atoms are screened with functions motivated from overlap integrals 
between orbitals on different atoms [326]. However, this procedure 
implicitly claims that the altitude difference of two objects becomes 
less when moving them apart laterally, which is not meaningful. In 
contrast, a very appealing approach is a model in which electrons are 
treated as shells, which are not tight to one individual atom [154], 
whereby, in principle, history dependence can be mimicked along the 
lines of the NaCl dissociation described in the introduction. There are 
also approaches using non-local softness matrices, the arguably most 
advanced one being the atom-condensed Kohn-Sham approximated 
to second order (ACKS2) [338]. Its purpose is twofold: First, defining 
the expressions for the softness matrix, which is the inverse of the 
hardness matrix, from expressions accessible from DFT calculations, 
and second to employ the result in simulations as a mean to deduce 
partial charges. Ultimately, ACKS2 contains SQE model as a limiting 
case. The downside of ACKS2 is that a 2N ⇥ 2N matrix must be 
defined, where N is the number of charges, while the number of split 
charges is only of order ZN. A frequently raised argument against SQE 
is that the large bond hardnesses occurring at large separation cause 
numerical difficulties. However, they can be addressed using appropriate 
pre-conditioners in square-gradient minimization or large split-charge 
inertia in extended Lagrangian approaches.
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One of the main limitations of the original SQE model is that it cannot 
produce isolated ions as the κij diverges at large rij. This limitation can be 
overcome by introducing oxidation numbers ni so that an atomic charge is 
given by 

Qi à ni eá
X

j
qji (117) 

with ni 2 Z in a so-called redox-SQE formalism [157,339]. The remain-
ing part of the SQE formalism is kept, except that force-field para-
meters, including chemical hardness and electronegativity, must now be 
assigned individually for each oxidation number. The redox-SQE 
approach allows a system to effectively move on different potential 
energy surfaces (if you’re a chemist) or different Landau-Zener levels 
(if you’re a physicist). Jumping between them requires the oxidation 
number of one atom to be increased by an integer, typically by one, 
while that of another, nearby atom must be decreased by the same 
number. The corresponding discrete dynamics can be implemented in 
practice, for example, in terms of Monte Carlo dynamics.

7.4. Properties resulting from charge-transfer potentials

A central aspect of polarizable and charge-transfer potentials is to 
reproduce the dielectric response of (condensed) media correctly, the 
most important quantity from a continuum perspective being the 
dielectric constant εr. The relation between point-dipole polarizability 

Figure 14. Polarizability of (a) electronegativity equilization model (EEM) (equivalent to the QEq 
model) and (b) SQE as a function of the polarizability deduced from quantum mechanical 
calculations on a variety of molecules. Green, red, and blue data points reflect the smallest, the 
medium, and the largest eigenvalue of the polarizability tensor for different molecules (includ-
ing varying conformations). Reprinted from Verstraelen, T., Van Speybroeck, V., and Waroquier, 
M. J. Chem. Phys. 131, 044127, (2009), with the permission of AIP Publishing.
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and εr is text-book material and reflected in the Clausius-Mossotti (CM) 
relation, Eq. (42), while that of a bond-polarizable model without point 
dipole polarizability was worked out by Nistor and Müser [329]. 
Combining the treatment of point and charge-transfer dipoles does 
not appear to have been presented in the literature hitherto. However, 
it can be easily achieved when following Hannay’s derivation of the CM 
relation [340]. It starts from the insight that the full electrostatic field of 
a dipole contains a contribution Eint à �pδÖrÜ=Ö3ε0Ü acting inside of it 
in addition to its usually stated far field.

Since each charge leads to a mean electrostatic field of zero, the mean 
electrostatic field of a charge distribution is also zero, however, outside the 
dipoles, it is reduced by Eint averaged over the volume that each point dipole 
occupies. Thus, the average field that a test charge sees outside of dipoles is 
the external electric field Eext (which is assumed to be constant) minus 
hEinti à �ρp=Ö3ε0Ü, where ρ is the density of point dipoles. For a rocksalt 
lattice, or, when discretizing a homoegeneous material into cubes of linear 
size a0 and arranging the local charge transfer variables, or, split charges in 
a vector q, the dipoles obey associated with the charge-transfer, a0q and the 
point dipoles obey 

a0q
κs
à Eext á

ρ
3ε0

p (118a) 

αp à Eext á
ρ

3ε0
p; (118b) 

respectively. Here, qx would be the split charge donated from an atom or 
grid point to its right neighbor, and so on, while κs is the corresponding 
bond hardness. The total polarizability is nothing but the total dipole 
density P à ρÖpá a0 qÜ, while εr is defined through P à Öεr � 1Üε0Eloc 
within linear response. After some minor algebra 

εr � 1 à ρ=Öa0 κsÜ á ρα
ε0 � ρα=3

(119) 

can be obtained, which contains the CM relation in the limit of κs !1 as 
well as εr � 1 à ρ=ÖaκsÜ valid for bond-polarizable models ignoring point 
dipoles [329]. Once bond polarizability is ignored in a charge-transfer 
model, εr diverges, which means that the system effectively turns metallic.

Continuum corrections to the above treatment would require the wave- 
number dependence of the charge-dipole and dipole-dipole coupling but 
also the chemical hardness coupling to be taken into account. The latter 
would augment the bond hardness in the presented treatment with κÖqa0Ü2. 
A wave-number dependent dielectric constant and thus a dielectric smear-
ing or decay length δ ensues. For a pure bond-polarizable model and the 
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geometry considered above, δ à
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
ε0a0κ=Ö1á ε0a0κsÜ

p
[336]. One of the 

consequences of this result is that ideal mirror charges do not accurately 
represent the dielectric response of real metals [332].

The potential importance of modeling dielectric response correctly is also 
demonstrated in Figure 15. It shows two pairs of two dislike solids, or, 
clusters, which can exchange charge, specifically, oxidation numbers, when 
they are sufficiently close to each other. In reality, this distance would be 
a weak function of the approach and retraction velocity. In one pair, both 
materials are metals, in the other, they are insulators. A lot of “electrons” 
transfer in the metallic couple and swapped charge delocalizes over the 
entire samples, mostly on their surfaces. In the insulating couple, only one 
charge exchanges, which remains localized near the former contact points 
after retraction.

8. Machine-learned potentials

In the past two decades, machine learning has conquered the world of 
interatomic potentials, a development that is ongoing and accelerating. 
The main idea is to equip a machine learning (ML) technique with a large 
database of structures for which energies, forces, stresses, etc. are computed 
using well-converged first-principle methods.3 Energies (or sometimes 
forces) are then extrapolated (or “predicted”) based on (local) structural 
similarity. Structural similarity is either encoded by directly comparing to 
configurations stored in this database, or it can be implicit in the weights of 
a neural network or the points of a sparse Gaussian process. Recent methods 
supplement such computational approaches with experimental data [342]. 
Additionally, predictions are not limited to energies and forces. Examples of 
other properties obtained from ML regression are core energies and X-ray 
photoelectron spectra [343–346].

Machine-learned potentials (MLPs) are sometimes characterized as being 
parameter-free, however, one may also claim that the number of parameters 
is gigantic. Occam’s razor suggests that models should have few parameters. 

Figure 15. Contact electrification with history-dependent potentials between two metals (left) 
and two dielectrics (right). Reprinted by permission from Springer: Eur. Phys. J. 86, 337, Towards 
time-dependent, non-equilibrium charge-transfer force fields, Dapp, W. B. and Müser M. H., 
[COPYRIGHT] (2013) Note that Figure 15 is a proof-of-principle demonstrator for the redox-SQE 
method [339]. It does not allow one to conclude that contact electrification between dielectrics 
primarily occurs through electron transfer. There are many good reasons to believe that ion 
exchange matters most [341].
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Yet, overfitting of high-dimensional models can be avoided by using para-
meterization procedures that are based on sound statistical principles, such 
as Bayesian inference. Additionally, all physically-justified potential forms 
(with few parameters) are based on a chain of approximations, e.g. going 
from the Born-Oppenheimer approximation, to DFT, neglecting three-body 
integrals in the tight-binding approximation, neglecting nonorthogonality 
and so on in the bottom-up construction of bond-order potentials for 
semiconductors. It is often unclear to what extend the final form is still 
a good approximation for interatomic interactions. To say it with the words 
of Bazant, Kaxiras and Justo [238]: “In the case of Si, the abundance of 
potentials in the literature illustrates the difficulty of the problem and lack of 
specific theoretical guidance. In spite of the wide range of functional forms and 
fitting strategies, all proposed models possess comparable and insufficient 
overall accuracy. It has proved almost impossible to attribute the successes 
or failures of a potential to specific features of its functional form.”

MLPs target reproducing the high-fidelity calculations used to construct the 
database. In that sense, they are higher accuracy (with respect to the reference 
DFT database) than more empirical or semiempirical models, but this may 
mean a lack of transferability to structures not explicitly considered in the 
database. This pitfall is of course not limited to MLPs: As an example, the 
first incarnation of the Tersoff potential for silicon [242] turned out to have bcc 
and not diamond cubic as the ground state [347]. Yet, potentials constructed on 
carefully curated databases give excellent transferability even to obscure crystal 
phases, see e.g. Ref. [348] for a current example, again for elemental silicon. This 
highlights the specific importance of database quality for MLPs.

Most MLPs consists of three basic components: First, a database of 
structures, already outlined above. Second, a “descriptor” that encodes the 
chemical environment of an atom into a unique fingerprint. In the absence 
of external fields, this fingerprint must be objective, i.e. it must be invariant 
with respect to translation and rotation. It must also be invariant with 
respect to the exchange of atoms of the same species. This allows the data 
set to be much reduced compared to the situation, where the ML technique 
has to learn objectivity by itself. An additional complication is that the 
database itself may not be perfectly objective, due to numerical errors in 
the underlying electronic structure calculations. Since we want forces, 
fingerprints also must be continuously differentiable at least once, and 
ideally, they also have continuous second derivatives. The third component 
is a regression framework, the “learning” aspect of the potential. Two broad 
directions of development have occurred here: Using neural networks, 
which can be regarded as a model having many parameters, or, Gaussian 
processes, which can be regarded as a scheme directly extrapolating between 
points in the database. The regression framework takes the fingerprints as 
input and predicts per-atom energies as output.
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Before continuing with more details, we would like to point out that 
many reviews by researchers more qualified than us to discuss MLPs have 
appeared recently, see Refs. [29,31,32,349,350]. This review focuses on 
simple functional forms that allow analytical calculations to be made. Yet, 
not discussing at least the basic ideas behind MLPs could be a severe 
omission localized near the former contact points after retraction discussion 
highlighting similarities between classical and MLPs might help the devel-
opment of either one.

8.1. Chemical fingerprints

Chemical fingerprints come in many forms, and we here discuss just 
a select few. The interested reader is referred to other literature, e.g. 
Refs. [350,351], for more comprehensive descriptions of the wide variety 
of fingerprints.

The arguably first and one of the simplest example of a chemical 
fingerprint consists of the coordination number and the bond- 
conjugation variable employed by Brenner in his potential for hydrocar-
bons [10,11,250]. Given a bond i-j, Brenner used the coordination num-
bers Ni, Nj and a bond conjugation parameter Nconj

ij as a fingerprint for the 
state of the bond (see Sect. 5.7 for more details). These variables are made 
continuous by computing the coordination numbers with a smooth cutoff, 
Ni à

P
j fcÖrijÜ where fcÖrÜ is one of the cutoff functions discussed in Sect. 

9.1. This fingerprint is then used to correct the bond-energy of a Tersoff 
potential through a lookup table. The lookup procedure continuously 
interpolates between integer values of the triplet ÖNi;Nj;Nconj

ij Ü using 
splines. The table entries were fitted to a small database of experimental 
properties of hydrocarbon molecules.

Brenner’s tables are used to correct a baseline potential, a procedure that 
is sometimes called a Δ-potential, e.g. in Ref. [32]. Other descriptors are 
needed for full-fledged machine-learned energies. As a simple instructive 
example, we consider two and three-body terms in the sense of Eq. (2). An 
objective descriptor for two-body interaction is simply the bond distance rij. 
For a three-body term, we can use the triplet of distances Örij; rik; rjkÜ as 
a descriptor. While this descriptor satisfies objectivity, it still has permuta-
tional symmetries with respect to the exchange of the positions of like atoms 
k and j. Bartók and Csányi [349] suggested the use of the descriptor 

qijk à Örik á rij; Örik � rijÜ2; rjkÜ (120) 

which is equivalent to Örij; rik; rjkÜ but symmetric with respect to the permu-
tation j$ k.
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We note that common potentials, like Axilrod-Teller-Muto (Sect. 4.1) 
and Stillinger-Weber (Sect. 5.4), which in their original formulation depend 
on the Örij; rik; rjkÜ triplet, can also be written in terms of the descriptor qijk. 
These analytical potentials obey the above permutational symmetries by 
construction. However, in a machine-learning context, where an energy is 
essentially obtained by extrapolating from a given set of database entries, 
there is no guarantee that such permutational symmetry will be fulfilled by 
the extrapolated quantities. This requires reformulation in a form such as 
Eq. (120).

The specific descriptor of Eq. (120) was used in the Gaussian approxima-
tion potential (GAP) [352] for amorphous carbon [353], later extended for 
improved accuracy of crystalline phases [354]. This potential followed 
a specific three-step construction: In the first step, a (nonparametric, i.e. 
machine learned) pair-potential was fitted to a database using the scalar rij as 
a descriptor. The second step involved correcting this potential using 
a three-body term employing the descriptor given by Eq. (120). Finally, 
this potential was again corrected using the many-body SOAP descriptor 
described further below. Incorporating simple descriptors (including a pair 
descriptor) into the construction of the potential gave improved transfer-
ability. This basic potential without the SOAP descriptor can be regarded as 
a machine-learned variant of the cluster expansion, see Eq. (2), in an 
embedding medium.

A successful strategy for obtaining more generic descriptors is the use of 
atom-centered symmetry functions introduced by Behler and Parrinello 
[355,356]. The atom-centered fingerprints consist of radial symmetry 
functions 

qÖ1;αÜi à
X

jfii
e�ηÖαÜ ÖRij�RÖαÜs Ü

2

f ÖαÜc ÖrijÜ : (121) 

These functions are Gaussians centered at a pair distance RÖαÜs that are forced 
smoothly to zero at a cutoff distance via f ÖαÜc ÖrÜ. They are similar to coordi-
nation numbers, but put specific weight on atoms at the distance RÖαÜs . In 
addition to these radial functions, there are angular functions 

qÖ2;βÜi à 21�ςÖβÜ
X

j;kfii
Ö1á λÖβÜ cos υijkÜ ςÖβÜ

e�ηÖβÜÖr2
ijár2

ikár2
jkÜ f ÖβÜc ÖrijÜ f ÖβÜc ÖrikÜ f ÖβÜc ÖrjkÜ:

(122) 

We have added the superscripts ÖαÜ and ÖβÜ to emphasize, that those 
functions are not evaluated for a single parameter vector Öη;Rs; λ; ζÜ and 
cutoff function but for a set of these parameters. The fingerprint vector qi is 
then constructed by combinations of qÖ1;αÜi and qÖ2;βÜi over these parameters 
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sets. This allows one to construct fingerprint vectors of arbitrary dimension 
but those fingerprints may contain redundant information. In the following, 
we will refer to the components of the fingerprint vector as qÖμÜi and drop the 
double notation Ö1; αÜ, Ö2; βÜ, implying that the index ÖμÜ also refers to the 
type of symmetry function and not just its parameters.

To emphasize connection to classical potentials, the qÖ1Üi look like the 
onsite ⇠ii terms occurring in our general functional form, Eq. (54), while the 
qÖ2Üi look like offsite ⇠ij terms. Indeed, if we replace the Gaussian in Eq. (121) 
with an exponential, the expression becomes identical to the local density of 
Ducastellium, see Eq. (59b). Similarly, qÖ2Üi are constructed like the many- 
body contributions in the SW and MEAM potentials.

Another important strategy for obtaining chemical fingerprint is the 
smooth overlap of atomic positions (SOAP) descriptor, introduced by 
Bartók, Kondor and Csányi [357]. It can be regarded as a generalization of 
the bond-orientational order parameter of Steinhardt, Nelson and Ronchetti 
[358]. The idea is to map the atomic configurations onto an atomic density 
field ρÖrÜ, which is given by atom-centered functions, 

ρÖrÜ à
X

i
δÖr� riÜ; (123) 

where δ is broadened to a Gaussian with a characteristic length ,at. Note that 
ρÖrÜ is invariant to permutations of atoms by construction and resembles 
the density constructed for EAM potentials. To obtain angular information, 
this density field is then expanded into a set of spherical harmonics 
YlmÖθ;ָÜ for each atom i, 

ρiÖrÜ à
X

nlm
Ci;nlmgnÖrÜYlmÖθi;ָiÜ (124) 

with local angles θi and ָi of the vector r� ri. The functions gnÖrÜ are 
orthogonal radial basis functions. The power-spectrum of the angular coef-
ficients Ci;nlm, 

pi;nn0l /
X

m
C⇤i;nlmCi;n0lm (125) 

is objective and hence fulfills symmetry considerations. Selected elements of 
this power spectrum, typically chosen up to an upper value of n, form the 
SOAP descriptor.

SOAP taken to higher body order – and with ,at ! 0 as in Eq. (123) – 
forms the basis of the atomic cluster expansion (ACE) [359,360]. We 
recommend study of Ref. [359] also because it outlines the relationship 
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between current machine-learning approaches and more traditional EAM 
and bond-order potentials. First parameterizations of (performant) ACE 
potentials are starting to appear in the literature [361].

8.2. Regression

Once we have a fingerprint vector, we need to interpolate (or since we are in 
a high-dimensional space, rather extrapolate) atomic energies. This is the 
task of the regression framework. Regression frameworks take as input 
a fingerprint vector and predict per-atom energies Ui, such that the total 
energy is simply U à

P
i Ui. This decomposition corresponds to the one 

used in all other potentials discussed in this review.
Regression can be as simple as a linear (ridge) regression. This is for 

example employed in spectral neighbor analysis potential [362], which uses 
the fingerprints introduced in the original GAP [352]. A more flexible 
regression strategy is the use of Gaussian process regression [252], which 
lends its name to the GAP potential [352]. An advantage of Gaussian 
processes is that there is a clear statistical interpretation of Gaussian process 
regression, which allows one to predict confidence intervals on energies in 
addition to expectation value or maximum probability estimates. In an 
active learning framework, this can help to identify regions in a database 
for which additional first-principles calculations (or experiments) are neces-
sary [363]. The final expression for the per atom energies takes the simple 
form, 

Ui à
X

t
αtKÖqi; qtÜ; (126) 

where the sum over t runs over all elements of the training database. The 
fingerprints qi of the current environment of atom i are compared to all 
fingerprints qt in the training database. The function KÖqi; qtÜ is the kernel 
that encodes a measure of distance in fingerprint space (and implicitly 
includes a mapping into a high-dimensional representation, typically called 
“feature space” in the ML literature [252]). From Eq. (126) it becomes 
immediately clear that the numerical effort of a GAP is linear in the number 
of points in the reference database. It is therefore crucial to sparsify the 
database, i.e. to remove entries that are close together in fingerprint space 
and do not improve the predictive power of the potential. Sparsification is 
highly nontrivial and we refer to the original literature on details [32].

A key feature of Gaussian process regression is that a notation of smooth-
ness of the potential energy landscape is build-in. A common choice for the 
kernel function K is a squared exponential (Gaussian) [252,353], which 
containsa set of distance scales ,α as a hyper parameter, 
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KÖqi; qtÜ / exp
Öqi;α � qt;αÜ2

2,2
α

( )

(127) 

The final potential energy is smoothed over ,α, which avoids parasitic local 
energy minima or artifacted phonon spectra, which are sometimes found 
when regressing with neural networks [364], or even when simply inter-
polating with splines [221]. GAPs additionally make use of a dot-product 
kernel for the many-body (SOAP) contribution to the energy [353]. The 
dot-product kernel has no intrinsic length-scale, but the SOAP descriptors 
contain intrinsic smoothing through the width ,at of the underlying atom- 
centered Gaussians. The expansion coefficients αt are obtained using 
a Bayesian regression scheme that is described in detail in the pertinent 
literature [252].

An interesting use of Gaussian process regression is the on-the-fly para-
meterization [365] of a force field based on electronic structure calculations 
carried out on snapshots throughout a molecular dynamics trajectory. Li, 
Kermode and de Vita [366] used a small database of reference configura-
tions, generated from past simulation steps of a molecular dynamics trajec-
tory, to extrapolate forces to the future. Their scheme differs qualitatively 
from the ones discussed above by predicting forces rather than energies. The 
reason for this is that unlike the per-atom energy, a per-atom force is an 
observable that can be computed straightforwardly within first-principles 
techniques for a subset of atoms in a system. This leads to a nonconservative 
force field, yet use of this method to accelerate a quantum-mechanical 
region in concurrent multi-scale modeling [365], e.g. of fracture [367,368], 
introduces no additional complication as the coupling scheme itself is 
typically non-conservative.

We note that GAPs are linear models (in feature space), as the final 
energies are linear combinations of Gaussians. ACE potentials [359,369] 
introduce an additional nonlinear mapping. Using a square-root (as in EAM 
or TB2M potentials) reduced the number of basis functions required for 
high-accuracy regression for copper [369]. Fully nonlinear regression can be 
achieved with neural networks. Behler and Parrinello [355] employed the 
specific form 

Ui à f Ö2Üa wÖ2Ü01 á
X

ν
wÖ2Üν1 f Ö1Üa wÖ1Ü0ν á

X

μ
wÖ1Üμν qÖμÜi

 !( )

; (128) 

for regression in their neural network potential. Here, f Ö1Üa ÖxÜ and f Ö2Üa ÖxÜ are 
sigmoidal “activation functions” and wÖ1Üν1 and wÖ2Üν1 are weights. The weights 
are numbers that are adjusted in the process of fitting the neural network. 
The sum over μ runs over all entries of the feature vector of atom qi. This 
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network has a single “hidden layer” with activation function f Ö1Üa ÖxÜ and the 
index ν runs over the outputs of this layer. The original fit for silicon by 
Behler and Parrinello employed three nodes in the hidden layer and 48 
entries in the fingerprint vector, amounting to a total of 196 weights. 
Equation (128) resembles the many-body contribution Um of classical 
potentials for open-shell systems, see Eq. (53).

9. Limiting the interaction range

Chemistry is local for the most part [370]. As a consequence, forces between 
distant atoms are minor, unless they are charged or carry dipoles. By 
neglecting interactions with distant atoms, much computing time can be 
saved at the expense of minor systematic errors, which can often be made 
marginal with mean-field or other coarse-graining corrections [371–373]. 
Unfortunately, the locality of chemistry cannot necessarily be specified in 
terms of cut-off radii, because to what extent two atoms “see” each other 
depends on various factors. Screening and cutting are somewhat related but 
the bonding topology and density must be known to express screening 
through cutting.

A metal atom will scarcely be exposed to the charge density of another 
atom if a third atom is sandwiched in between them. Baskes incorporated 
such screening conceptually into MEAM potentials [225,374] motivated by 
the observation that “the second-nearest neighbors do not play a part even in 
the bcc structure,” despite the ratio of nearest to next nearest-neighbor shell 
being as small as 1:15. He continued that “this surprising result gives some 
support to the procedure we have used here in ignoring all but first-neighbor 
interactions” [225] (in the description of crystals). Defects and disorder, 
both central to materials properties, place large demands on the assessment 
of bonding topology and make it necessary to define gray shades between 
bonded and non-bonded. In realistic descriptions, those cannot be judged 
using only the distance between two atoms.

Dispersive interactions between noble-gas atoms are not screened so that 
limiting their interaction range (without accounting for long-range correc-
tions) is merely an exercise in finding a good compromise between accuracy 
and computational efficiency. Therefore, the task of cutting potentials might 
appear technical or even trivial at first sight. Doubling the cutoff radius rc 
beyond which interactions are ignored requires roughly an eightfold compu-
tational effort in three spatial dimensions to construct neighbor lists and to 
evaluate pair potentials, which can be unjustifiable if the total dispersive 
interaction is already accurate. However, undesired qualitative artifacts can 
arise when cutting improperly. Brittle materials can turn ductile [375,376] and 
thereby make it on the cover of contemporary text books [377], or, nano-tube- 
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based water pumps work endlessly without external driving due to improper 
cut-offs [378], the report of which [379] having made it through the exquisite 
reviewing process of Nature journals. Nonetheless, cutting potentials is 
a prerequisite for the linear scaling of numerical effort per time step with 
the number of atoms N and for the efficient parallelization on parallel, high- 
performance computing systems using domain-decomposition [380–386]. 
Even long-range Coulomb potentials can be computed with a numerical effort 
scaling linearly or quasi-linearly with N [387–389], which requires atom-atom 
distance evaluations to be cut off at a finite distance.

Unfortunately, choosing optimum cut-off radii and procedures depends 
not only on the potential but also on the property of interest. Someone 
studying phase equilibria between different thermodynamic phases wants 
the potential depths to be reproduced as accurately as possible, which can be 
achieved with a brutal truncation of the potential at a given rc without 
shifting. Implementing such a potential is readily done for Monte Carlo, 
however, for a molecular dynamics simulation, one would have to account 
for the δ-function singularity in the interaction force at rc, which no 
sympletic integrator in the world would be pleased about. On the other 
hand, someone interested in mechanical properties can care less about the 
depth of energy minima but should instead be careful about potential 
curvature and the smoothness of the force at the cutoff. A bond whose 
tensile force disappears only linearly at rc cannot be broken adiabatically, 
which risks to exaggerate loss moduli or viscosities: a spring attached to 
a bond would snatch into or out of bonding whenever the bond length r 
passes through rc, whereby energy is dissipated [390].

Three more general points are worth discussing before cutting to the chase: 
First, when two phases like fcc and hcp have a similar thermodynamic 
potential, the choice of cutting can affect what phase is preferred [391]. 
However, at that point it might always be wise to consider other effects like 
many-body interactions and thermal or quantum fluctuations of the nuclei. 
Second, changing the cut-off procedure or cut-off radius may require a new 
parameterization of the potential. Third, and perhaps most importantly, not 
only potentials can be cut or smoothed but all operations discussed here below 
can also be applied to forces. However, cutting forces generally leads to non- 
conservative forces unless they originate from central, two-body potentials.

9.1. Cutting

9.1.1. Pair functions
Not only pair potentials must be cut off but also expressions that many-body 
potentials depend on, such as the charge density in EAM potentials, or the 
interaction between point multipoles. Cutting procedures for pair functions 
can be broadly categorized into cut-and-shift and smoothing.

ADVANCES IN PHYSICS: X 89



Cut-and-shift procedures [392] redefine a pair potential U2ÖrÜ such that 
all its derivatives up to l‘th order approach zero continuously at rc and 
remain zero for r ! rc: 

Ushift
2;l ÖrÜ à U2ÖrÜ � T âU2ÖrÜ; rc; läf gΘ rc � rÖ Ü (129) 

Here, T âU2ÖrÜ; rc; lä is the l‘th order Taylor expansion of U2ÖrÜ about rc.
The effect of cut-and-shift procedures on U2ÖrÜ and on the equation of 

state is shown exemplarily for a Morse potential (n à 6, rc=r0 à 2, 
l à 0; . . . ; 2) in Figure 16a. It becomes evident that “large” l lead to a poor 
representation of the binding energy unless rc is large, which, however costs 
computing time. However, serious artifacts can occur when potentials are 
truncated but also when they are merely shifted with l à 0. The EOS of an 
athermal crystal is discontinuous even for l à 0 as revealed in Figure 16b. 
Thermal fluctuations smear out and potentially eliminate this discontinuity. 
Nonetheless, caution remains advisable. In principle, a l‘th-order shifted 
potential can have a discontinuity in @lp=@Vl so that a force-shifted poten-
tial risks to cause a discontinuity in the compressibility or any elastic tensor 
element including its imaginary, i.e. viscous part, as just discussed.

An alternative to cut-and-shift potentials is the use of cut-off or smooth-
ing functions fcÖrÜ, which are multiplied with the true pair potential to yield 

Ucut
2 ÖrÜ à U2ÖrÜfcÖrÜ: (130) 

The general property of smoothing functions is that they are unity below an 
inner radius, ri, which may be zero or even negative. They decrease past ri, 
approach zero at rc, and remain zero ever after. Formally they can be 
expressed as 

fcÖrÜ à ΘÖri � rÜ á φcÖxÜΘÖr � riÜΘÖrc � rÜ (131) 

with x à Ör � riÜ=Örc � riÜ. Many of the lessons learned for cut-and-shift 
applies to smoothing, in particular w.r.t. what artifacts are produced 
depending on the order l with which derivatives of the potential disappears 
at rc. However, an additional risk of smoothing functions is that using 
“large” l does not guarantee artifacts to be suppressed in particular when 
ri is close to rc. Prominent smoothing functions φcÖxÜ are 
[216,217,224,227,242,393]: 

1á cosÖπxÜf g=2 li à 1; lc à 1 Tersoff (132a) 

Ö1� xÜ3Ö1á 3xá 6x2Ü li à 2; lc à 2 MEAM (132b) 

8á 9 cosÖπxÜ � cosÖ3πxÜf g=16 li à 2; lc à 2 Murty water (132c) 
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exp �Ö2xÜmf g li à m� 1 ÖunknownÜ; (132d) 

expÖλá λ=Öx� 1ÜÜ li à 0; lc à1 Stillinger&Weber (132e) 

2Ö1� xÜm=Ö1á Ö1� xÜnÜ li à 0; lc à m� 1 Mishin (132f) 

where integer Mishin exponents are commonly selected as m à n à 4. In Eq. 
(132), li and lc specify which highest l‘th-order derivative of the smoothed 
function approaches zero at ri and rc, respectively. Moreover, li à 0 means 
that φcÖriÜ à 1 while φ0cÖ0Üfi0, while omitting lc means that φcÖxà 1�Üfi0. 
Recently, it was found that cutting with polynomials constructed such that li à
lc á 1 can simultaneously improve binding energies while reducing cut-off 
artifacts [394]. This is because cut-off induced discontinuities of (the derivatives 
of) short-range potentials are distinctly larger at ri than at rc.

9.1.2. Cutting Coulomb potentials
Wolf et al. [395] suggested that the Coulomb interaction in an overall 
neutral system can be cut off without producing systematic errors. The 
idea is to represent the Coulomb interaction through the Ewald summation 
[396], keep the q à 0 contribution (which could be seen as a kind of mean- 
field correction), and to ignore any contribution at non-zero wave vector q. 
Some authors find support for the correctness of Wolf’s optimistic assess-
ment [285,397], while others don’t [398,399]. In fact, small cutoff radii can 
be used for homogeneous systems when using appropriate cut-off functions, 
e.g. clearly less than 10Å in silica melts [394]. However, problems arise when 
structural heterogeneities extend on length scales λ! rc [394]. They induce 
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Figure 16. Left panel: Truncated (black), cut-and-shift (blue), shifted-force (red), and shifted- 
curvature (green) Morse potential with exponent n à 8 and a cut-off distance of rc à 2:0 r0. The 
cut-and-shift procedures include l à 0 (blue), l à 1 (red), and l à 2 (green). Right panel: energy 
per atom of an ideal fcc crystal as a function of the nearest-neighbor distance a0=r0 using the 
shifted potential (blue), shifted force (red), and shifted curvature (green) for the Morse potential 
with n à 8 and a cutoff radius rc à 2:0 r0. Dots and squares denote reduced volumes at which 
a neighbor-shell radius is equal to rc.

ADVANCES IN PHYSICS: X 91



undulations in chemical potentials with wave vectors of order q à 2π=λ, 
which favor a charge separation. Coulomb interactions suppress that 
separation with terms scaling as 1=q2. The pertinent restoring forces are 
neglected for the most part in the Wolf summation.

Another argument for why the Wolf summation cannot be cutoff in 
heterogeneous systems can be made when considering a gold nugget 
separated by a large distance from a chunk of lithium. If electrons can 
equilibrate, gold will acquire a negative charge due to its larger electro-
negativity. While the charge density on each lump will decrease with their 
size, the absolute force attracting them will increase. This mechanism also 
matters for discharge simulations of batteries or related devices [157], 
despite the presence of a Helmholtz double layer near the electrodes. If 
a Maxwellian demon were to keep all electrolyte atoms in place and closed 
an electrical switch allowing some charge to flow between anode and 
cathode, a current would flow, which would extend much beyond an 
elementary charge. Thus, local charge neutrality cannot be obeyed during 
the entire time of the discharge process. Once the demon releases the 
electrolyte particles, discharge can continue after the electrolyte rejuve-
nated the double layers. Modeling the described process with a Wolf 
summation properly would require one to use a cut-off exceeding the 
anode-cathode separation. Thus, the Wolf summations, or better general-
izations thereof avoiding a discontinuous force at rc [285,394], can be 
made for homogeneous systems, but steer clear of it otherwise, in parti-
cular in any biophysical context [286].

9.1.3. Many-body potentials
Smoothing functions are not only applied to pair potentials but also in 
many-body potentials, sometimes with the goal to imitate screening. In 
a crystalline structure, interactions with atoms in the nearest-neighbor 
shell should be unmodified but those with the next-nearest neighbors 
should be screened – often those are approximated to be fully screened. 
Figure 17 illustrates the effect of cutting the interaction in a Ducastelle 
potential at various distances. When cutting with a distance-based criterion, 
energies (Figure 17a) are forced to drop to zero somewhere between first 
and second neighbor shell of the equilibrium crystal (since we do not want 
interaction with second neighbors at equilibrium - they are screened). This 
leads to a force or pressure overshoot during homogeneous volumetric 
dissociation of the crystal, illustrated in Figure 17b. Attempting to break 
such a crystal with an external stress overestimates the critical stress for 
fracture by a factor of four. For this reason, some works have adopted 
cutting forces rather than energies for modeling fracture [400], despite the 
fact that this leads to a nonconservative force-field. The proper solution to 
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this issue is the use of screening functions, discussed in the next section. 
They yield the true nearest-neighbor potential (shown by the black line in 
Figure 17) and hence smooth dissociation of the crystal.

9.2. Screening

In order to reflect screening through screening rather than through cutting, 
Baskes et al. [225,374] proposed to replace cutoff functions with environ-
ment-dependent screening functions, Sij, which themselves are products of 
three-body functions 0< Sijk < 1, 

Sij à
Y

ki;j
Sijk (133) 

The Sijk are constructed such that k when atom k screens the interaction 
between i and j completely, while Sijk à 1 when atom k does not screen the ij 
interaction at all. Thus, the screening function acts like a topological cutoff 
function, 0  Sij  1. Baskes proposed different functional forms for Sijk. 
The refined expression is [374] 

Sijk à
1 if Cijk  Cmin

exp � ÖCmax � CijkÜ=ÖCijk � CminÜ
⇥ ⇤2

n o
if Cmin <Cijk <Cmax

0 if Cijk � Cmax

8
><

>:
;

(134) 

which drops from unity to zero between Cmax and Cmin. The quantity Cijk 
characterizes the geometry of the ellipse that passes through the three atoms 
i-j-k. It is given by 
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Figure 17. (a) Energy per atom as a function of distance and (b) pressure as a function of 
volume for a Cu fcc crystal described by a Ducastelle potential, respectively [222]. The MEAM 
cutoff function given by Eq. (132b) was applied to the repulsive potential and the density. Uc 
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Cijk à
2 Xik á Xjk
� �

� Xik � Xjk
� �2 � 1

1� Xik � Xjk
� �2 ; (135) 

the square of the ratio of the lengths of the two half-axes of that ellipse. Here 
Xik à rik=rij is the distance between atoms i-k normalized by the length of 
the central i-j bond.

Figure 18 illustrates this concept. The bond is unscreened (S à 1) if there 
is no third atom in its vicinity (Figure 18a). As a third atom moves into the 
shaded ellipsis (Figure 18b – the geometry of the ellipsis is described by the 
values of Cmin and Cmax) the bond becomes screened (S à 0, Figure 18c). It 
becomes clear, that if we simply rescale all coordinates (as in the homo-
geneous, volumetric dissociation of a crystal), S remains constant for each 
bond and an energy would follow the true nearest neighbor curve, see the 
black line in Figure 17(a). The screening function S is hence a scale- 
invariant formulation of a “cutoff” procedure.

The Baskes screening functions [374] were applied to empirical bond- 
order potentials independently by Pastewka et al. [25,376,401] and Kumagai 
et al. [402]. Both groups emphasized that the screened potentials signifi-
cantly improved the properties of amorphous carbon modeled with REBO2 
or Tersoff-type potentials. In addition, the screening functions served to 
overcome the issue with dissociation of a bond under external stress dis-
cussed in Refs. [25,375,376,401]. This enabled modeling of fracture in 
crystalline and amorphous carbon systems [403]. Perriot et al. [404] pre-
sented a slightly different screening concept requiring the REBO potential to 
be refitted.

Screening functions can be rationalized as originating from nonortho-
gonality in a tight-binding framework. This nonorthogonality leads to an 
environment-dependence of the bond-integrals, when the nonorthogonal 
tight-binding is “coarse-grained” to an equivalent orthogonal tight-binding 
model. Nguyen-Manh, Pettifor and Vitek [405,406] showed, that the theory 
of the bond-order expansion, briefly touched upon in Sect. 5.8, can be used 
to derive screening functions from a nonorthogonal tight-binding model. 
This first-principles construction lends additional support to Baskes’ screen-
ing functions and other screening approaches, such as empirical environ-
ment-dependence introduced in the context of orthogonal tight-binding 
shortly after Baskes work [407–410].

10. Summary and perspectives

Eugene Wigner allegedly said: “It is nice to know that the computer under-
stands the problem. But I would like to understand it too.” One main 
motivation for writing this review was to assist people with similar 
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ambitions as Wigner. To this end, we summarized our understanding of 
what properties in condensed-matter systems can be induced by the func-
tional form of the potentials used for their description. In our endeavor, we 
felt compelled to create much own data and new figures with the purpose to 
create insight and to convey trends and differences between potential classes 
rather than to produce numbers for a specific system. When doing so, we 
did our best to embed anything written into a historical context, which is 
summed up in Figure 19.

Yet many times, we could not find appropriate references or quotes, 
which we are certain do exist. As one of numerous examples, we found 
many papers computing shear and bulk moduli of metals or vacancy-defect 
and cohesive energies, but always missed the argument why their respective 
ratios are correlated and how they relate to the ratio of melting and boiling 
temperature. We expect our discussion to have satisfied Wigner’s desire for 
understanding the correlation between these ratios. Despite certainly having 
missed well known studies, we did find some old works, which may have 
been underappreciated, such as Slater’s paper on the interaction between 
helium atoms [82]. As mentioned earlier, Slater derived the exponential 
repulsion between atoms with closed valence shell, which promoted Born 
and Mayer [83] as well as Buckingham [7] to use this or slightly modified 
forms for the repulsion in the potentials now carrying their names. 
However, Slater also derived the dispersive coefficient for helium to within 
15% accuracy, two years before London [56] generalized the results to other 
closed-valence shells.

Despite the length of this article, we could only scratch the surface of the 
large field of interatomic potentials. Many central aspects were not touched 
upon. Most importantly, we barely discussed how to adjust parameters, in 

Figure 18. Illustration of the screening concept. The black atom moves along the hypothetical 
trajectory indicated by the shaded atoms and the red arrow. (a) Initially, the thick, black bond is 
unscreened, but as (b) the atom enters the region of influence (light gray ellipses) the bond 
weakens. (c) The atom has moved into the close vicinity of the bond (dark gray region), 
effectively disabling it while creating two new bonds (red lines). The Baskes screening functions 
[374] are defined the aspect ratio of the light gray region (Cmax) and the dark gray (Cmin), 
defining a measure of bond screen that is independent of the absolute lengths of the bonds in 
the system.
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particular the pros and cons to fit to experimental or to in-silico data. There 
are good reasons to follow the main-stream opinion that the quality of 
a potential increases the less empirical the data on which the potential is 
parameterized. Computer-generated reference data is much more versatile 
than that provided from experiments. Forces on individual atoms can be 
used for characteristic bonding situations or rare but important configura-
tions like a transition state occurring during a chemical reaction or 
a collective phase transformation [411]. Moreover, in-silico data does not 
contain quantum effects, which frequently need to be accounted for when 

Figure 19. Selected highlights of the development of interaction potentials.
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comparing computer-generated data to experiments. Describing how to do 
that properly would have required us to outline how to approximately 
subtract the nuclear quantum effects from experimental data or how to 
incorporate quantum fluctuations into the simulations, e.g. through path- 
integral techniques, or, by encoding their effect into effective temperature- 
dependent, many-body potentials, which would have been beyond the scope 
of this review.

Thus, there is scarcely any argument to gauge parameters on experi-
ments, if there was not the small but important detail that experimental 
data is by and large more accurate than density-functional theory, which 
cannot be deemed exact, as long as the exact functional has not been 
identified. It could be argued that we base one theory or potentials with 
uncontrolled approximations on another one with uncontrolled approxi-
mations, which has trouble to predict two dislike molecules or clusters 
separated by a large distance to each acquire an integer charge [412,413]. 
When dismissing empiricism as fundamentally problematic, one may also 
keep in mind that one of the greatest theoretical achievements in chemistry, 
arguably in all of science, was the construction of the periodic table by 
Mendeleev. He even predicted the existence of unknown elements including 
some of their physical and chemical properties with an accuracy that people 
using potentials or even DFT might have a hard time to match if they did 
not know what they had to predict, or, rather postdict. Moreover, the 
amount of data that Mendeleev could build on was noticeably less than 
what is required in machine learning.

The potentials discussed in this review pertain mostly to situations, in 
which bonds can be clearly classified as dispersive, metallic, covalent, or 
ionic. For situations, where this simple categorization cannot be made, 
different potential classes are combined in a mix-and-match fashion into 
compound potentials. Prominent examples are the adaptive intermolecular 
REBO (AIREBO) [251] (combining Brenner’s potential with nonbonded 
Lennard-Jones interaction), the Streitz-Mintmire potential [414] (combin-
ing EAM with charge transfer), the charge-optimized many-body potential 
(COMB) [415–417] (combining Tersoff’s potential with charge transfer), 
a merger of REBO with split-charge equilibration [330,418], as well as early 
combinations of Keating-type with charge-transfer potentials potentials 
[419,420]. Of course, the widely-used ReaxFF potential [12,421], which 
merges a bond-order approach (different in nature than the approaches 
discussed in this review) with non-bonded interactions and charge transfer, 
must also be mentioned.

While compound approaches can be extremely powerful, many of them 
simply add different energy terms. This can be problematic even for see-
mingly simple alloys or intermetallics formed by elements of large electro-
negativity difference. Put simply, negatively charged atoms grow in size 
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while positively charged atoms shrink. This symmetry breaking between 
negative and positive charge is not reflected when simply adding charge 
equilibration to a (post) Ducastelle potential. Yet, it is supposedly respon-
sible for why the negatively charged atoms in intermetallics have the ten-
dency to close pack while positive atoms occupy interstitial positions, as it 
happens, for example, for Al2Au, also called the purple plague: Au atoms 
form an fcc lattice while Al atoms assume interstitial positions. Although 
promising steps toward true compound potentials have been taken [422], 
e.g. by augmenting or reducing the valence density of a neutral atom with 
a term proportional to its partial charge, systematically merged potential 
remain a dream.

Novel paths that are taken with machine learning potentials seem 
extremely promising. However, a puzzling question is why machine- 
learned potentials outperform parameterized potentials. The claim 
that they are parameter free or free of functional constraints is not 
entirely justified. Many of the local descriptors are suspiciously close 
to what is used in potentials, as indeed they are often “physics- 
inspired” [350]. However, the big advantage of MLPs is that they do 
not make strong assumptions like pair-wise additive repulsion, which 
might be one of the most important sources of error in classical 
interatomic potentials.

A show-stopping problem central to all potentials is the curse of dimen-
sionality. Fitting multi-species (or alloy) potential requires a number of 
pair-parameters that scales asymptotically as N2

s with the number of atomic 
species Ns. The scaling becomes even less favorable if we need specific 
parameters for triplets ( / N3

s ), quadruplets ( / N4
s ) and so on, quickly 

becoming intractable for a large number of species. The compression of 
chemical fingerprints has recently been proposed to circumvent the curse of 
dimensionality for MLPs [423]. Using explicit functional forms, it can be 
possible to circumnavigate the curse of dimensionality with combining 
rules. However, they are only available for few interactions types and may 
be plagued with poor transferability.

As a final note, we would like to point out that despite the fact that 
(with the exception of bare Coulomb interaction) all potentials dis-
cussed here are local, chemistry can be quite non-local. By non- 
locality we do not mean the range of the bare interaction, such as the 
range of the bond-integrals in a tight-binding formulation. We mean 
the non-locality intrinsic in the diagonalization of the quantum 
mechanical Hamiltonian. In hydrocarbon chemistry, the non-locality 
manifests itself for example in bond conjugation and in metals through 
an algebraic decay of the density matrix [424], while in group 15–17 in 
the periodic table, it is reflected in the Peierls deformation causing 
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elemental crystals to reduce from the simple cubic to less symmetric 
structures [425]. As another example, carbon chains – also called 
carbynes – can exist in a polyynic form of alternating single and triple 
bonds or a cumulenic form of repeating double bonds [426–428]. 
Which form is chosen depends on whether the chain is odd or even 
numbered and how it is terminated. This crucially affects how they 
interact with their environment, for example with oxygen [429,430]. 
Such non-local effects even manifest in bulk materials: Force-locality 
tests on amorphous carbon by Deringer and Csányi showed that chem-
istry in low-density, graphite-like amorphous carbon is much longer 
ranged than in denser more diamond-like carbon [353]. Approaches for 
incorporating true quantum non-locality into potentials currently do 
not appear to exist. Modeling it appears to require new classes of 
potential, e.g. the ability of an EAM or MEAM potential to make 
atoms adjust their donating charge density in response to the environ-
ment in a fashion that allows for multistability.

We hope that this review was successful in highlighting the incredible 
achievements throughout the last century in understanding the bonding 
of matter, and molding these insights into simple analytical expressions. 
The wide availability of high-accuracy electronic structure calculations 
and advances in statistical modeling have moved the field into exciting 
new directions. We would also like to add that the wide availability of 
present-day interatomic potentials in the form of open-source software, 
ideally embedded in a standard database [13] or a standard code 
[380,381], is accelerating quick adoption of potentials into practice — 
not to mention the savings in students’ lifetimes, by not having to 
dissect which of the 50 parameters just manually copied from printed 
publication XYZ is missing a 0 in print. (Yes, we are thinking about our 
own PhD theses.) Of course, significant challenges remain, both for 
traditional fixed-form as well as machine-learned interatomic potentials, 
of which we believe the curse of dimensionality and the coupling of 
electron transfer and Coulomb interaction to the electronic bond as 
most crucial [431].

Notes

1. A large set of these tabulated potentials files can be found in the NIST interatomic 
potentials repository at https://www.ctcms.nist.gov/potentials/.

2. Functions of the Hamitonian are defined through their action on eigenfunctions, 
f ÖĤÜjni à f ÖεnÜjni, or through a power series expansion of f .

3. See https://libatoms.github.io/GAP/data.html for links to high-quality ab-initio data-
bases for C, Si, and other materials.
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Nomenclature/Notation

Abbreviations
ACEatomic cluster expansion
ATMAxilrod-Teller-Muto interaction potential
DFTdensity-functional theory
EAMembedded-atom method
EOSequation of state
GAPGaussian approximation potential
LJLennard-Jones
MEAMmodified EAM
MLmachine learning
MLPmachine-learned potential
QEqcharge equilibration
REBOreactive empirical bond-order potential
REBO2second generation REBO
SQEsplit-charge equilibration
SWStillinger-Weber
TB, TBnMtight-binding, TB n-th order moment expansion

Symbols
α, α0 polarizability in SI and atomic units
αM Madelung constant
δαβ Kronecker delta
✏ Lennard-Jones energy parameter
ε0 vacuum permittivity
εr dielectric constant
εαβ element of the Eulerian strain tensor
ηαβ element of the Lagrangian strain tensor
ρ charge density, number density
σ length scale parameter
σαβ element of the Cauchy stress tensor
A electron affinity
Bn n-th order virial coefficient
Cαβγδ element of elastic tensor
Cij element of elastic tensor in Voigt notation
Cn dispersion coefficient of order n
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Ĥ Hamilton operator
Hiαjβ Hamiltonian integral between orbital α on atom i and orbital β on atom j
I ionization energy
B bulk modulus
N particle number
Qi charge of atom i
Sij square of the distance between atoms i and j
U interaction energy
U0 dimer/molecular binding energy
Upa potential energy per atom
Ueq

pa Ucohequilibrium potential energy per atom (cohesive energy)
Upb potential energy per bond
Ueq

pb equilibrium potential energy per bond
U1 UÖiÜ1 single body interaction energy
U2 U3pair and triplet interaction energy
V volume
Z0 coordination number
Zs number of atoms in s‘th nearest-neighbor shell
an distance between an atom with a Öná 1Ü-nearest neighbor
aeq

0
equilibrium bond length

aB Bohr radius
fc cutoff function
kBT thermal energy
m mass
nÖεÜ density of states
niαÖεÜ local density of states of orbital iα
p̂i momentum operator
pi pidipole moment of species i and its magnitude
p pressure
qi descriptor of the environment of atom i
qij bond charge donated from atom i to atom j
r, rij(pair) distance
r0 equilibrium distance in a diatomic molecule
rc cutoff radius
ναβ

s , ναβγδ
s second- and fourth-rank shell tensor for the s‘th nearest-neighbor shell

vpa volume per atom
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