research

There's no such thing as the unknown - only things temporarily hidden, temporarily not understood. — James Tiberius Kirk

Our research focuses on the mechanics and physics of surfaces and interfaces, combining atomistic simulations, continuum modeling, and data-driven approaches. We develop computational methods to understand how materials interact at scales ranging from individual atoms to macroscopic engineering components.

Contact mechanics and adhesion

Surface roughness fundamentally controls how solids make contact. Even nominally flat surfaces touch only at their highest protrusions, limiting the true area of intimate atomic contact. We develop theoretical and computational models for rough contact mechanics and validate them through close collaboration with experimental groups. Our work includes the first direct comparison of elastic-plastic contact models with measurements of contact interfaces, as well as a parameter-free theory for adhesion hysteresis of soft contacts that explains why breaking contact requires more force than making it. Our earlier work on adhesion in the partial contact regime established what is now known as the Pastewka-Robbins criterion for the onset of adhesion.

  1. Contact between rough surfaces and a criterion for macroscopic adhesion
    Lars Pastewka, and Mark O. Robbins
    Proc. Natl. Acad. Sci. U.S.A. 111, 3298-3303 (2014)
  2. Elastic shakeown and roughness evolution in repeated elastic–plastic contact
    Lucas Frérot, and Lars Pastewka
    Tribol. Lett. 72, 23 (2024)
  3. Why soft contacts are stickier when breaking than when making them
    Antoine Sanner, Nityanshu Kumar, Ali Dhinojwala, Tevis D B Jacobs, and Lars Pastewka
    Sci. Adv. 10, eadl1277 (2024)

Tribology: Friction, wear, and lubrication

Understanding friction and wear at the atomic scale is essential for designing durable mechanical systems. Using molecular dynamics with carefully constructed interatomic potentials, we discovered the mechanism of diamond wear: shear-induced amorphization at the sliding interface, followed by oxidation that removes carbon as CO or CO₂. This work provides what is probably the most detailed atomistic understanding of wear for any material. We extend these insights to lubricated contacts, combining machine-learned constitutive laws with continuum models to bridge the gap between molecular dynamics and engineering-scale simulations of boundary and mixed lubrication.

  1. Active learning for nonparametric multiscale modeling of boundary lubrication
    Hannes Holey, Peter Gumbsch, and Lars Pastewka
    Sci. Adv. 11, eadx4546 (2025)
  2. Anisotropic mechanical amorphization drives wear in diamond
    Lars Pastewka, Stefan Moser, Peter Gumbsch, and Michael Moseler
    Nat. Mater. 10, 34-38 (2011)
  3. Toward a continuum description of lubrication in highly pressurized nanometer-wide constrictions: The importance of accurate slip laws
    Andrea Codrignani, Stefan Peeters, Hannes Holey, Franziska Stief, Daniele Savio, Lars Pastewka, Gianpietro Moras, Kerstin Falk, and Michael Moseler
    Sci. Adv. 9, eadi2649 (2023)

Computational materials science

We develop and apply atomistic simulation methods for materials under mechanical load. This includes reactive interatomic potentials that correctly capture bond-breaking processes, analysis of dislocation dynamics in high-entropy alloys, and studies of viscoelastic properties of amorphous materials. Our open-source simulation tools, including matscipy, provide the community with efficient implementations of algorithms for fracture mechanics, contact mechanics, and electrochemistry at the atomic scale.

  1. Constitutive relations for plasticity of amorphous carbon
    Richard Jana, Julian Lautz, S Mostafa Khosrownejad, W Beck Andrews, Michael Moseler, and Lars Pastewka
    J. Phys. Mater. 3, 035005 (2020)
  2. Surface lattice Green’s functions for high-entropy alloys
    Wolfram G Nöhring, Jan Grießer, Patrick Dondl, and Lars Pastewka
    Modelling Simul. Mater. Sci. Eng. 30, 015007 (2022)
  3. matscipy: materials science at the atomic scale with Python
    Petr Grigorev, Lucas Frérot, Fraser Birks, Adrien Gola, Jacek Golebiowski, Jan Grießer, Johannes L Hörmann, Andreas Klemenz, Gianpietro Moras, Wolfram G. Nöhring, Jonas A. Oldenstaedt, Punit Patel, Thomas Reichenbach, Thomas Rocke, Lakshmi Shenoy, Michael Walter, Simon Wengert, Lei Zhang, and James R. Kermode
    J. Open Source Softw. 9, 5668 (2024)

Data-driven surface science

Extracting scientific insight from surface topography measurements requires robust statistical methods. We lead the development of contact.engineering, an open-access platform for analyzing and sharing surface topography data. The platform currently serves over 480 scientists and engineers who have contributed more than 19,500 measurements. To address reproducibility challenges in surface metrology, we coordinated the Surface Topography Challenge, a multi-laboratory benchmark study with participation from over 60 laboratories worldwide.

  1. Contact.engineering—Create, analyze and publish digital surface twins from topography measurements across many scales
    Michael C Röttger, Antoine Sanner, Luke A Thimons, Till Junge, Abhijeet Gujrati, Joseph M Monti, Wolfram G Nöhring, Tevis D B Jacobs, and Lars Pastewka
    Surf. Topogr.: Metrol. Prop. 10, 035032 (2022)
  2. Scale-dependent roughness parameters for topography analysis
    Antoine Sanner, Wolfram G. Nöhring, Luke A. Thimons, Tevis D.B. Jacobs, and Lars Pastewka
    Appl. Surf. Sci. Adv. 7, 100190 (2022)
  3. The surface-topography challenge: A multi-laboratory benchmark study to advance the characterization of topography
    A. Pradhan, M. H. Müser, N. Miller, J. P. Abdelnabe, L. Afferrante, D. Albertini, D. A. Aldave, L. Algieri, N. Ali, A. Almqvist, T. Amann, P. Ares, B. N. Balzer, L. Baugh, E. A. Berberich, M. Björling, M. S. Bobji, F. Bottiglione, B. Brodmann, W. Cai, G. Carbone, R. W. Carpick, F. Cassin, J. Cayer-Barrioz, M. I. Chowdhury, M. Ciavarella, E. Cihan, D. Huang, E. Delplanque, A. J. Deptula, S. Descartes, A. Dhinojwala, M. Dienwiebel, D. Dini, A. C. Dunn, C. Edwards, M. Eriten, A. Esawi, R. M. Espinosa-Marzal, L. Fang, A. Fatemi, C. Fidd, D. Gabriel, F. Gaslain, G. Giordano, J. Gómez-Herrero, L. Gontard, N. N. Gosvami, G. Greenwood, C. Greiner, T. Grejtak, A. Haroun, M. Hasan, S. Hoppe, L. Isa, R. L. Jackson, S. Jang, O. Johnson, F. Kaiser, M. Kalin, K. Kalliorinne, P. H. Karanjkar, S. H. Kim, S. Kinzelberger, P. Klapetek, B. A. Krick, C. Kumar, N. Kumar, S. Kumar, P. LaMascus, R. Larsson, P. Laux, M. J. Lee, P. M. Lee, W. Lee, C. Leriche, J. Li, Y. Li, Y.-S. Li, T. A. Lubrecht, I. A. Lyashenko, C. Ma, T. Ma, F. Maaboudallah, S. Mahmood, F. Mangolini, M. Marian, D. Mazuyer, Y. Meng, N. Menga, T. Miller, D. M. Mulvihill, M. Najah, D. Nečas, C. I. Papadopoulos, A. Papangelo, M. Pauli, B. N. J. Persson, A. Peterson, A. A. Pitenis, P. Podsiadlo, M. Polajnar, V. L. Popov, T. Požar, A. Prasad, G. Prieto, C. Putignano, M. H. Rahman, S. B. Ramisetti, S. Raumel, I. J. Reyes, N. Rodriguez, M. Rodríguez Ripoll, H. Rojacz, P. Sainsot, A. Samodurova, D. Savio, M. Scaraggi, F. Schaefer, S. W. Scherrer, K. D. Schulze, K. E. Shaffer, M. A. Sidebottom, D. Skaltsas, J. Soni, C. Spies, G. W. Stachowiak, L. Steinhoff, N. C. Strandwitz, K. Sun, S. Tripathi, W. R. Tuckart, S. Ugar, M. Valtr, K. E. Van Meter, J. Vdovak, J. G. Vilhena, G. Violano, G. Vorlaufer, M. Walczak, B. Weber, T. Woloszynski, M. Wolski, A. Yadav, V. A. Yastrebov, M. Yongjian, L. Yuan, J. Yus, J. Zhang, X. Zhang, Q. Zheng, L. Pastewka, and T. D. B. Jacobs
    Tribol. Lett. 73, 110 (2025)

Computational methods

Efficient numerical methods are essential for multiscale simulations. We develop FFT-based solvers for mechanics problems in heterogeneous materials, including contact mechanics, fracture, and homogenization of metamaterials. These spectral methods enable simulations at resolutions that would be computationally prohibitive with traditional finite element approaches.

  1. An optimal preconditioned FFT-accelerated finite element solver for homogenization
    Martin Ladecký, Richard J. Leute, Ali Falsafi, Ivana Pultarová, Lars Pastewka, Till Junge, and Jan Zeman
    Appl. Math. Comput. 446, 127835 (2023)
  2. Elimination of ringing artifacts by finite-element projection in FFT-based homogenization
    Richard J. Leute, Martin Ladecký, Ali Falsafi, Indre Jödicke, Ivana Pultarová, Jan Zeman, Till Junge, and Lars Pastewka
    J. Comp. Phys. 453, 110931 (2022)
  3. Green’s function method for dynamic contact calculations
    Joseph M. Monti, Lars Pastewka, and Mark O. Robbins
    Phys. Rev. E 103, 053305 (2021)